Rural Catchments: Difference between revisions

From BlueM
Jump to navigation Jump to search
m (remove hierarchy extension template)
 
(33 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{HierarchieKopf}}
{{BlueM.Sim_nav}}
{{BlueMTheory_nav}}
 
The natural process leading from rain to run-off is divided into three phases. The phases are Belastungsbildung, run-off generation (bzw. Belastungsaufteilung) and run-off concentration. The calculation approach for each of these phases is described in the following sections of this article.


Die Simulation natürlicher Einzugsgebiete verlangt die Bestimmung der Belastungsbildung, Belastungsaufteilung (oder auch Abflussbildung) und der Abflusskonzentration. Im Folgenden sind die zugrunde liegenden Berechnungsansätze aufgeführt.


==Belastungsbildung==
==Belastungsbildung==


Die Belastungsbildung beschreibt die Ermittlung des Gebietsniederschlags für das betrachtete Einzugsgebiet. Pro Einzugsgebiet wird nur ein Niederschlag benutzt. Liegen mehrere Niederschlagsstationen im Einzugsgebiet vor, so ist es zweckmäßig das Gebiet in mehrere Systemelemente 'Einzugsgebiet' zu unterteilen, bis jedem Element wieder nur ein Niederschlag zugeordnet werden kann.


==Abflussbildung befestigter / unbefestigter Flächen==
Die Belastungsbildung describes the determination of an areal rainfall for the considered catchment.Rainfall data is imported into BlueM via external time series. Therefore no explicit calculations are necessary for this phase.
 
 
==Run-off generation==
 
In this phase surface run-off, infiltration, evaporation and interflow are determined by calculating the effective rainfall out of the fallen rain. Snow is calculated for temperatures below 0°C. The Snow-Compaction-Method {{:Literatur:Knauf_1980|Knauf}} is applied.


Die Abflussbildung ermittelt aus dem gefallenen Niederschlag den Effektivniederschlag und daraus abgeleitet die Komponenten Oberflächenabfluss, Infiltration, Verdunstung und Interflow. Eine Schneeberechnung wird durchgeführt bei Temperaturen unter Null °C und erfolgt anhand des Snow-Compaction-Verfahrens nach {{:Literatur:Knauf_1980|Knauf}}.
Rainfall (system load) is divided into rainfall which directly generates run-off and run-off diminishing losses (wetting, trough, evaporation and infiltration losses). Therefore this phase is also called the Belastungsaufteilung. The mathematical equation for the momentary Belastungsaufteilung is as follows:


Der natürlich ablaufende Prozess vom Niederschlag zum Abfluss wird für die mathematische Simulation in einzelne Phasen untergliedert. In der Abflussbildungsphase wird die Aufteilung des Niederschlages (Systembelastung) in den direkt zum Abfluss gelangenden "wirksamen Niederschlag" und die abflussunwirksamen Verluste (Benetzungs-, Mulden-, Verdunstungs-und Versickerungsverlust) vorgenommen. Dementsprechend wird diese Phase auch mit Belastungsaufteilung bezeichnet. Die resultierende mathematische Gleichung für die momentane Belastungsaufteilung schreibt sich wie folgt:


:<math>Nw(t) = N(t) - VP(t) - I(t) - \frac{dO}{dt} - \frac{dS}{dt}</math>
:<math>Nw(t) = N(t) - VP(t) - I(t) - \frac{dO}{dt} - \frac{dS}{dt}</math>


:mit:  
:mit:  
:NW = abflusswirksamer Niederschlag
:NW = run-off generating rainfall
:N = Niederschlag
:N = rainfall
:VP = potentielle Verdunstung
:VP = potential evaporation
:I = Infiltration in den Bodenraum
:I = infiltration into the soil
:O = Oberflächenwasservorrat
:O = surfacce water reservoir content
:S = Schneevorrat
:S = snow reservoir content


Nachfolgend werden die in der Gleichung verwendeten Terme und deren Berechnung im Einzelnen erläutert.
The individual elements of the equation and the calculation of these elements is described in the following.


===Niederschlag N(t)===


Die Niederschlagsdaten müssen dem Simulationsmodell in Form von Regenreihen zur Verfügung gestellt werden. Hierbei ist es prinzipiell unerheblich, ob die Niederschlagsreihe ein Blockregen, ein Modellregen, ein gemessener natürlicher Regen, ein Regenspektrum oder eine langjährige Regenreihe ist. Je nach Zielsetzung der Simulationsrechnung ist die geeignete Belastung ausgewählt werden. Die Regenreihen stammen entweder aus der Zeitreihenverwaltung von BlueM <span class="TALSIM">oder werden wie bei Anwendung einer Kurzfristprognose durch die Eingabe einer Regendauer, einer Niederschlagshöhe und der Wahl eines Modellregens direkt vor einer Simulation erzeugt</span>.
===Rainfall N(t)===


===Verdunstung VP(t)===
BlueM requires rainfall data in form of rain time series. In general is does not matter if a block rain, Regenspektrum or a longtime rainfall time series. Depending on the purpose of the simulation the appropriate load (type) must be chosen. Rainfall time series originate out of the BlueM time series management <span class="TALSIM"> or are created immediately before simulation begin as is the case for short term prediction by supplying a rainfall duration, rainfall height and choosing a model rainfall </span>.
Es bestehen zwei Optionen für die [[EZG-Datei|Eingabe]] einer potentiellen Verdunstung:


====a) Jahresverdunstungssumme====
 
[[Bild:Theorie_Abb33.gif|thumb|Abbildung 33: Jahresgang der potentiellen Verdunstung nach {{:Literatur:Brandt_1979}}]]
===Evaporation VP(t)===
Es wird ein normierter Jahresgang  der potentiellen Verdunstung nach {{:Literatur:Brandt_1979|Brandt}} für die Berechnung der potentiellen Verdunstung herangezogen. Aus ausgewerteten Messungen von 20 Stationen, deren Mittelwerte als Histogramm in [[:Bild:Theorie_Abb33.gif|Abbildung 33]] dargestellt sind, wurde folgende Ausgleichsfunktion (gepunktete Linie in [[:Bild:Theorie_Abb33.gif|Abbildung 33]]) ermittelt:
There are two possibilities for the [[EZG-Datei|input]] of potential evaporation:
 
====a) annual evaporation ====
[[File:Theorie_Abb33.gif|thumb|Abbildung 33: annual pattern of potential evaporation according to {{:Literatur:Brandt_1979}}]]
A normed annual pattern of potential evaporation according to {{:Literatur:Brandt_1979|Brandt}} is utilized for the calculation of potential evaporation. Through the evaluation of measurements from twenty different stations, whichs mean-values are depicted as a histogram in [[:File:Theorie_Abb33.gif|Abbildung 33]], the following smoothing function was derived (doted line in [[:File:Theorie_Abb33.gif|Abbildung 33]]):


:<math>VP[\mbox{mm/d}] = \begin{cases}(0.96 + 0.0033 \cdot i) \cdot \sin(\frac{2 \pi}{365})(i - 148) + 1.58, & i <= 300 \\ 2.56 - 1.53 / 65. \cdot (i - 300.), & i > 300 \end{cases}</math>
:<math>VP[\mbox{mm/d}] = \begin{cases}(0.96 + 0.0033 \cdot i) \cdot \sin(\frac{2 \pi}{365})(i - 148) + 1.58, & i <= 300 \\ 2.56 - 1.53 / 65. \cdot (i - 300.), & i > 300 \end{cases}</math>


:mit
:´with
:i = laufender Tag des hydrologischen Jahres
:i = ongoing day of the hydrological year
:i = 1 &rarr; 1. November
:i = 1 &rarr; 1. November


Die potentielle Verdunstung nach Brandt bezieht sich auf die {{:Literatur:DVWK_1996|'''Grasreferenzverdunstung'''}} und geht von einer Jahresverdunstungshöhe von 654,282 mm aus. Wird eine abweichende Jahresverdunstungshöhe eingegeben, wird der nach Brandt ermittelte Wert entsprechend skaliert.


====b) Verdunstungszeitreihe====
Potential evaporation according to Brandt refers to  {{:Literatur:DVWK_1996|'''grass reference evaporation'''}} and assumes an annual total evaporation loss of 654,282 mm. If a different annual total evaporation loss is entered, the value determined by Brandt is scaled accordingly.
Ist eine Verdunstungszeitreihe gegeben, wird der entsprechende Wert des Zeitschrittes eingelesen. <br/>
''Vorsicht:'' Bei einem Simulationszeitschritt < 1d wird der Zeitreihenwert zusätzlich mit einem Tagesgang überprägt! (Bug 1)


====Verdunstungstagesgang====
====b) evaporation time series====
[[Bild:Theorie_Abb34.gif|thumb|Abbildung 34: Tagesgang der potentiellen Verdunstung als Vielfaches der mittleren Tagesverdunstung]]
If a evaporation time series is supplied the utilized time step is imported. <br/>
Ist das gewählte Berechnungszeitintervall kleiner als ein Tag, wird mittels dem in [[:Bild:Theorie_Abb34.gif|Abbildung 34]] dargestellten Tagesgang die potentielle Verdunstung für jedes Berechnungszeitintervall ermittelt. Ist das Berechnungsintervall &ge; 1 Tag entfällt die Berücksichtigung des Tagesganges.
''Attention:'' For time steps  < 1 day the time series value is additionally overprinted with a daily pattern! (Bug 1)


===Oberflächenwasservorrat (Versiegelter Flächenanteil) O===
====daily pattern of evaporation====
[[File:Theorie_Abb34.gif|thumb|Abbildung 34: Daily pattern of potential evaporation as a multiple of mean daily evaporation]]
If the chosen time step for the calculation is < 1 day the potential evaporation for each time step is calculated by taking the daily pattern depicted in [[:File:Theorie_Abb34.gif|Abbildung 34]] into consideration. If the chosen time step is &ge; 1 day the daily pattern is disregarded.


Bei den versiegelten Flächenanteilen kann neben dem Schneevorrat auch die Infiltration vernachlässigt werden, so dass sich die Bilanzgleichung wie folgt vereinfacht:
 
===Surface water reservoir content(fraction of impervious area) O===
Snow reservoir content as well as infiltration can be neglected for impervious areas. Therefore the equation of balance is reduced to:


:<math>Nw(t) = N(t) - VP(t) - \frac{dO}{dt}</math>
:<math>Nw(t) = N(t) - VP(t) - \frac{dO}{dt}</math>


wobei die Oberflächenwasservorratsänderung dO/dt die Benetzung der Oberfläche sowie die Auffüllung und Entleerung (durch Verdunstung) der Mulden repräsentiert.
in which the change in surface water reservoir content <code>dO/dt</code> represents wetting of the surface as well as filling and depletion of water (through evaporation) in troughs.


Als Benetzungsverlust BV für versiegelte Flächen wird folgender Standardwert angesetzt.
The wetting loss (BV) for impervious areas is set to the following standard value.


:<code>BV = 0.5 mm</code>
:<code>BV = 0.5 mm</code>


Der Muldenverlust MV wird durch den Anwender vorgegeben. Der Standard- und gleichzeitig Maximalwert im Modell beträgt 1 mm.
Trough loss (MV) is set by the user in the [[ALL-Datei|ALL-File]].
 
Der Muldenverlust stellt den Mittelwert für eine geneigte Oberfläche dar. Da die Mulden jedoch nicht gleichmäßig verteilt sind und erfahrungsgemäß bereits ein Abfluss einsetzt, bevor überall die komplette Muldenauffüllung erreicht ist, wird unterstellt, dass jeweils
 
[[Bild:Theorie_Abb35.gif|thumb|Abbildung 35: Schema der Modellansätze Benetzungs- und Muldenverluste]]
 
* 1/3 der versiegelten Fläche einen verminderten Muldenverlust von 1/3 MV
* 1/3 der versiegelten Fläche den mittleren Muldenverlust von 3/3 MV
* 1/3 der versiegelten Fläche einen erhöhten Muldenverlust von 5/3 MV
 
aufweist. Somit kommt es bereits zum Abfluss, wenn der um die Verdunstungsrate verminderte Niederschlag den Benetzungsverlust und 1/3 des Muldenverlustes übersteigt (bei trockener Vorgeschichte). In [[:Bild:Theorie_Abb35.gif|Abbildung 35]] sind die o.g. Annahmen schematisch skizziert.
 
Der Abflussbeiwert der versiegelten Flächen (nach Abdeckung der Anfangsverluste) wird mit &psi; = 1 angesetzt. Bei der Festlegung des versiegelten Flächenanteils in einem Teileinzugsgebiet ist zu beachten, dass nicht alle befestigten oder versiegelten Flächen tatsächlich in eine Kanalisation entwässern.
 
Die kontinuierliche Bereitstellung der Benetzungs- und Muldenverluste erfolgt über die laufende Bilanzierung dieser Speicher und der Verdunstung.
 
===Oberflächenwasservorrat (unversiegelter Flächenanteil) O===
 
Der Oberflächenwasservorrat wird über die Bilanzierung eines Verlustspeichers in Abhängigkeit des gewählten Abflussbildungsansatzes berechnet. Einzelheiten dazu finden sich in den folgenden Abschnitten zur Berechnung der Infiltration bzw. abflusswirksamer Niederschlag.


===Infiltration bzw. abflusswirksamer Niederschlag I(t), Nw(t)===
The trough loss is the mean value for an inclined surface. Due to the fact that troughs are not evenly distributed and experience has shown that run-off occurs before all troughs are completely filled the following assumption is made, that:


Bei den durchlässigen Flächen kann die Infiltration in den Boden nicht vernachlässigt werden, da diese das Abflussgeschehen entscheidend prägt. Für die Berechnung wurden drei Ansätze im Modell implementiert:
[[File:Theorie_Abb35.gif|thumb|Abbildung 35: Schematic of the model approach for wetting and trough losses]]


# Konstanter Abflussbeiwert &psi;
* 1/3 of the impervious area has a reduced trough loss of 1/3 MV
# Ereignisspezifischer Abflussbeiwert in Anlehnung an das Verfahren des Soil-Conservation-Service (SCS)
* 1/3 of the impervious area has a mean trough loss of 3/3 MV
# Bodenfeuchtesimulation
* 1/3 of the impervious area has a elevated trough loss of 5/3 MV


====Konstanter Abflussbeiwert &psi;====
. Therefore run-off occurs as soon as the rainfall (reduced by evaporation) is greater than wetting losses and 1/3 of the trough losses (in dry antecedent conditions). In [[:File:Theorie_Abb35.gif|Abbildung 35]] the assumptions are depicted schematically.


Bei Angabe eines &psi;<sub>u</sub>-Wertes kommt nach Abdeckung der Anfangsverluste (Benetzungs- und Muldenverlust) der übrige Anteil des Niederschlages im Verhältnis des Abflussbeiwertes &psi;<sub>u</sub> zum Abfluss und zwar unabhängig von der Vorgeschichte und den Merkmalen des Niederschlages (Höhe, Intensität, Dauer). Auf diesen Ansatz sollte nach Möglichkeit verzichtet werden, da hier der Prozess der Abflussbildung nur grob vereinfachend beschrieben wird.
The run-off coefficient of the impervious areas (after overcoming initial losses) is set to &psi; = 1. When determining the fraction of impervious areas for a catchment it needs to be considered that not all paved or impervious areas drain into the canalization.


====Ereignisspezifischer Abflussbeiwert in Anlehnung an das Verfahren des Soil-Conservation-Service (SCS)====
Wetting and trough losses are continuously made available  through the ongoing balancing of these reservoirs and evaporation.


Bei Angabe eines vom Bodentyp und der Bodennutzung abhängigen CN-Wertes (siehe {{:Literatur:DVWK_1991}}) lässt sich ein vorgeschichtsabhängiger Anfangsverlust sowie eine vorgeschichtsabhängige Beziehung des Abflussbeiwertes von der bis zum betrachteten Zeitpunkt akkumulierten Niederschlagshöhe formulieren (cp. {{:Literatur:Zaiß_1989}}); d.h. der Abflussbeiwert wächst mit zunehmendem Niederschlag im Verlauf des Ereignisses an.


Die Quantifizierung der Vorgeschichte erfolgt über den 21-Tage-Vorregenindex <code>VN</code>
===Surface water reservoir content (fraction of pervious areas) O===


:<math>V_N = \sum_{j=1}^{21} C(j)^j \cdot h_{N,j}</math>
Surface water reservoir content is determined through the ongoing balancing of a loss reservoir in dependency of the chosen run-off generation approach.Details can be found in the following sections about calculation of infiltration respectively run-off generating rainfall.


:mit
===Infiltration respectively run-off generating rainfall I(t), Nw(t)===
:<code>h<sub>N,j</sub></code> = Niederschlagshöhe des j-ten Vortags
:<code>C(j)</code> = Faktor, der den Einfluss des j-ten Vortags beschreibt


Der Einfluss der Jahreszeit wird durch einen Jahresgang des Faktors C wiedergegeben.
Infiltration into the soil can not be neglected for pervious areas due to the fact that infiltration substantially influences run-off. Three approaches were implemented in the model for the calculation of infiltration:


:<math>C = 0.05 \cdot \sin\left(\frac{2 \pi}{365}\right) (i + 0.75 ) + 0.85</math>
# constant run-off coefficient &psi;
# event specific run-off coefficient similar to the method of the Soil-Conservation-Service (SCS)  
# soil moisture simulation


:mit
====constant run-off coefficient &psi;====
:<code>i</code> = lfd. Tag des Abflussjahres


[[Bild:Theorie_Abb36.gif|thumb|Abbildung 36: Abhängigkeit des Abflussbeiwertes von der Vorgeschichte]]
By supplying a &psi;<sub>u</sub>-value the remaining rainfall after having covered the initial losses (wetting and trough losses)generates run-off according to the ratio of the run-off coefficient &psi;<sub>u</sub> independent of previous history and the characteristics of the rainfall (height, intensity, duration). If possible this approach should not be used, because it only represents a very rudimentary description of the run-off generation process.


Damit schwankt der Wert <code>C</code> zwischen <code>0,8 < C < 0,9</code>. Hierdurch wird erreicht, dass bei gleichem Vorregen zu unterschiedlichen Jahreszeiten unterschiedliche Vorregenindizes berechnet und damit eine veränderte Abflussbereitschaft in Rechnung gestellt wird.


In Abhängigkeit von der auf diese Weise quantifizierten Vorgeschichte kann unter Verwendung der gebietsspezifischen und für mittlere Vorfeuchteverhältnisse gültigen CN-Werte ein aktueller Abflussbeiwert berechnet werden. In [[:Bild:Theorie_Abb36.gif|Abbildung 36]] ist für unterschiedliche CN-Werte dargestellt, wie sich der aktuelle Abflussbeiwert in Abhängigkeit von der Vorgeschichte verändert.
====SCS-Method====
:''refer to [[SCS-Verfahren|SCS-Method]]''


[[Bild:Theorie_Abb37.gif|thumb|Abbildung 37: Abhängigkeit des Abflussbeiwertes von der kumulierten Niederschlagssumme]]
====Soil moisture simulation====
:''refer to [[Bodenfeuchtesimulation|Soil moisture simulation]]''


Da sich im Verlaufe eines Regenereignisses durch die Durchfeuchtung des Bodens die Abflussbereitschaft eines Einzugsgebiets verändert, wird ebenfalls eine Anpassung des Abflussbeiwertes während eines Ereignisses als Funktion der kumulierten Niederschlagshöhe vorgenommen. In [[:Bild:Theorie_Abb37.gif|Abbildung 37]] ist dieser Zusammenhang für unterschiedliche CN-Werte dargestellt.
==Run-off concentration==
[[File:Parallelspeicherkaskade_EZG.gif|thumb|400px|Abbildung 44: Calculation of run-off concentration for rural catchments]]
Run-off concentration determines the delay of discharge out of the catchment. Calculation of Interflow and base flow is dependent on the chosen calculation approach. If [[Bodenfeuchteberechnung|soil moisture simulation]] is chosen, the discharge of both run-off components at the catchment outlet is delayed through a linear reservoir. If the run-off coefficient approach or the SCS-Method is chosen, interflow is neglected and base flow is determined through regarding the given  specific base discharge and a possible consideration of an annual pattern.


<div class="TALSIM">
A parallel reservoir cascade is utilized with two reservoirs each for the cascade for pervios and the cascade for impervious areas.
Bei der Abhängigkeit der Abflussbereitschaft zum kumulierten Niederschlag bietet TALSIM 2.2 zwei Möglichkeiten:
The reservoir cascades can be calculated as linear or [[Speicherbaustein|non-linear reservoirs]]. If the reservoir cascade parameters are not supplied, they are calculated through using area characteristics according to {{:Literatur:Zaiß 1986}}


# Variabler Verlustansatz (default):<br/>Die Anpassung eines Verlustwertes für die Funktion des Abflussbeiwertes zum kumulierten Niederschlag erfolgt für jeden Zeitschritt neu.<br/>(liefert insgesamt höhere Abflussbeiwerte, so dass auf die Berücksichtigung eines Vorregens verzichtet werden kann)
# Konstanter Verlustansatz:<br/>Die Anpassung des Verlustwertes erfolgt nur zu Ereignisbeginn einmalig.<br/>(der Ansatz eines Vorregens ist in diesem Fall zweckmäßig)


Welcher Ansatz bessere Ergebnisse liefert geht nur aus einem Vergleich mit gemessenen Ganglinien hervor. Grundsätzlich ergeben sich mit dem variablen Verlustansatz höhere Abflussspitzen und Füllen bei gleichen Bedingungen.
==Literature==
 
Eine weitere Möglichkeit zur Beeinflussung der Abflussbildung besteht in der Option, einen Endabflussbeiwert festzulegen. Damit beschränkt man unabhängig vom gewählten Verlustansatz den maximalen Abflussbeiwert. Standardmäßig setzt TALSIM den Endabflussbeiwert auf 1.
</div>
 
====Bodenfeuchtesimulation====
''Siehe [[Bodenfeuchtesimulation]]''
 
==Abflusskonzentration==
[[Bild:Parallelspeicherkaskade.gif|thumb|400px|Abbildung 44: Berechnung der Abflusskonzentration von Einzugsgebieten]]
Die Abflusskonzentration bestimmt die Verzögerung des Oberflächenabflusses aus dem Einzugsgebiet. Es wird eine Parallelspeicherkaskade mit drei Speichern für unbefestigte und eine Kaskade für befestigte Flächen benutzt.
 
Die Speicherkaskaden können entweder als Einzellinearspeicher, oder als [[Speicherbaustein|nichtlineare Speicher]] berechnet werden.
 
Der Abfluss der Komponenten Interflow und Grundwasser wird über einen linearen Einzelspeicher verzögert an den Elementausgang abgegeben (''nur bei [[Bodenfeuchteberechnung]]!'').
 
==Literaturangaben==
<references/>
<references/>


{{HierarchieFuss}}
[[Category:BlueM Theorie]]
 
[[Kategorie:BlueM Theorie]]

Latest revision as of 06:37, 9 January 2015

BlueM_icon.png BlueM.Sim | Download | Application | Theory | Development

The natural process leading from rain to run-off is divided into three phases. The phases are Belastungsbildung, run-off generation (bzw. Belastungsaufteilung) and run-off concentration. The calculation approach for each of these phases is described in the following sections of this article.


Belastungsbildung

Die Belastungsbildung describes the determination of an areal rainfall for the considered catchment.Rainfall data is imported into BlueM via external time series. Therefore no explicit calculations are necessary for this phase.


Run-off generation

In this phase surface run-off, infiltration, evaporation and interflow are determined by calculating the effective rainfall out of the fallen rain. Snow is calculated for temperatures below 0°C. The Snow-Compaction-Method Knauf[1] is applied.

Rainfall (system load) is divided into rainfall which directly generates run-off and run-off diminishing losses (wetting, trough, evaporation and infiltration losses). Therefore this phase is also called the Belastungsaufteilung. The mathematical equation for the momentary Belastungsaufteilung is as follows:


[math]\displaystyle{ Nw(t) = N(t) - VP(t) - I(t) - \frac{dO}{dt} - \frac{dS}{dt} }[/math]
mit:
NW = run-off generating rainfall
N = rainfall
VP = potential evaporation
I = infiltration into the soil
O = surfacce water reservoir content
S = snow reservoir content

The individual elements of the equation and the calculation of these elements is described in the following.


Rainfall N(t)

BlueM requires rainfall data in form of rain time series. In general is does not matter if a block rain, Regenspektrum or a longtime rainfall time series. Depending on the purpose of the simulation the appropriate load (type) must be chosen. Rainfall time series originate out of the BlueM time series management or are created immediately before simulation begin as is the case for short term prediction by supplying a rainfall duration, rainfall height and choosing a model rainfall .


Evaporation VP(t)

There are two possibilities for the input of potential evaporation:

a) annual evaporation

Abbildung 33: annual pattern of potential evaporation according to Brandt (1979)[2]

A normed annual pattern of potential evaporation according to Brandt[2] is utilized for the calculation of potential evaporation. Through the evaluation of measurements from twenty different stations, whichs mean-values are depicted as a histogram in Abbildung 33, the following smoothing function was derived (doted line in Abbildung 33):

[math]\displaystyle{ VP[\mbox{mm/d}] = \begin{cases}(0.96 + 0.0033 \cdot i) \cdot \sin(\frac{2 \pi}{365})(i - 148) + 1.58, & i \lt = 300 \\ 2.56 - 1.53 / 65. \cdot (i - 300.), & i \gt 300 \end{cases} }[/math]
´with
i = ongoing day of the hydrological year
i = 1 → 1. November


Potential evaporation according to Brandt refers to grass reference evaporation[3] and assumes an annual total evaporation loss of 654,282 mm. If a different annual total evaporation loss is entered, the value determined by Brandt is scaled accordingly.

b) evaporation time series

If a evaporation time series is supplied the utilized time step is imported.
Attention: For time steps < 1 day the time series value is additionally overprinted with a daily pattern! (Bug 1)

daily pattern of evaporation

Abbildung 34: Daily pattern of potential evaporation as a multiple of mean daily evaporation

If the chosen time step for the calculation is < 1 day the potential evaporation for each time step is calculated by taking the daily pattern depicted in Abbildung 34 into consideration. If the chosen time step is ≥ 1 day the daily pattern is disregarded.


Surface water reservoir content(fraction of impervious area) O

Snow reservoir content as well as infiltration can be neglected for impervious areas. Therefore the equation of balance is reduced to:

[math]\displaystyle{ Nw(t) = N(t) - VP(t) - \frac{dO}{dt} }[/math]

in which the change in surface water reservoir content dO/dt represents wetting of the surface as well as filling and depletion of water (through evaporation) in troughs.

The wetting loss (BV) for impervious areas is set to the following standard value.

BV = 0.5 mm

Trough loss (MV) is set by the user in the ALL-File.

The trough loss is the mean value for an inclined surface. Due to the fact that troughs are not evenly distributed and experience has shown that run-off occurs before all troughs are completely filled the following assumption is made, that:

Abbildung 35: Schematic of the model approach for wetting and trough losses
  • 1/3 of the impervious area has a reduced trough loss of 1/3 MV
  • 1/3 of the impervious area has a mean trough loss of 3/3 MV
  • 1/3 of the impervious area has a elevated trough loss of 5/3 MV

. Therefore run-off occurs as soon as the rainfall (reduced by evaporation) is greater than wetting losses and 1/3 of the trough losses (in dry antecedent conditions). In Abbildung 35 the assumptions are depicted schematically.

The run-off coefficient of the impervious areas (after overcoming initial losses) is set to ψ = 1. When determining the fraction of impervious areas for a catchment it needs to be considered that not all paved or impervious areas drain into the canalization.

Wetting and trough losses are continuously made available through the ongoing balancing of these reservoirs and evaporation.


Surface water reservoir content (fraction of pervious areas) O

Surface water reservoir content is determined through the ongoing balancing of a loss reservoir in dependency of the chosen run-off generation approach.Details can be found in the following sections about calculation of infiltration respectively run-off generating rainfall.

Infiltration respectively run-off generating rainfall I(t), Nw(t)

Infiltration into the soil can not be neglected for pervious areas due to the fact that infiltration substantially influences run-off. Three approaches were implemented in the model for the calculation of infiltration:

  1. constant run-off coefficient ψ
  2. event specific run-off coefficient similar to the method of the Soil-Conservation-Service (SCS)
  3. soil moisture simulation

constant run-off coefficient ψ

By supplying a ψu-value the remaining rainfall after having covered the initial losses (wetting and trough losses)generates run-off according to the ratio of the run-off coefficient ψu independent of previous history and the characteristics of the rainfall (height, intensity, duration). If possible this approach should not be used, because it only represents a very rudimentary description of the run-off generation process.


SCS-Method

refer to SCS-Method

Soil moisture simulation

refer to Soil moisture simulation

Run-off concentration

Abbildung 44: Calculation of run-off concentration for rural catchments

Run-off concentration determines the delay of discharge out of the catchment. Calculation of Interflow and base flow is dependent on the chosen calculation approach. If soil moisture simulation is chosen, the discharge of both run-off components at the catchment outlet is delayed through a linear reservoir. If the run-off coefficient approach or the SCS-Method is chosen, interflow is neglected and base flow is determined through regarding the given specific base discharge and a possible consideration of an annual pattern.

A parallel reservoir cascade is utilized with two reservoirs each for the cascade for pervios and the cascade for impervious areas. The reservoir cascades can be calculated as linear or non-linear reservoirs. If the reservoir cascade parameters are not supplied, they are calculated through using area characteristics according to Zaiß (1986)[4]


Literature

  1. Knauf, D. (1980): Die Berechnung des Abflusses aus einer Schneedecke, in: DVWK-Schriften, Heft 46, Analyse und Berechnung oberirdischer Abflüsse PDF information.png
  2. 2.0 2.1 Brandt, T. (1979): Modell zur Abflussgangliniensimulation unter Berücksichtigung des grundwasserbürtigen Abflusses, Technischer Bericht Nr. 24 aus dem Institut für Wasserbau, Fachgebiet Ingenieurhydrologie und Hydraulik der TH Darmstadt
  3. DVWK (Hrsg.) (1996): Ermittlung der Verdunstung von Land- und Wasserflächen, DVWK-Merkblätter zur Wasserwirtschaft, Heft 238. Bonn: Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH
  4. Zaiß, H. (1986): Abflussermittlung aus Teilflächen, in "Hydrologische Abflussmodelle in der praktischen Anwendung", 36. Fortbildungslehrgang des BWK-Hessen am 21. März 1986, Friedberg [ihwb-Bibliothek: Inv.-Nr. 5593, 10 BWK 36] PDF information.png OCR information.png