Soil moisture calculation: Difference between revisions

From BlueM
Jump to navigation Jump to search
(→‎Soil type: language, clarification)
 
(38 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{HierarchieKopf}}
{{BlueM.Sim_nav}}
Alle mit der Bodenfeuchtesimulation berechneten Größen sind im nachfolgenden Bild angegeben.
{{BlueMTheory_nav}}


[[Bild:Theorie_Abb39.gif|thumb|600px|center|Abbildung 39: Berechnete Größen mit der Bodenfeuchtsimulation]]
__TOC__
All process-values which are calculated through soil moisture simulation are depicted in the following picture.
[[Bild:Theorie_Abb39.gif|thumb|600px|center|Abbildung 39: calculated process-values through soil moisture simulation]]


Bei der Anwendung der Bodenfeuchtesimulation ist die Angabe von Landnutzungen notwendig. Aus den Angaben zur Landnutzung wird die Durchwurzelungstiefe benötigt, um die Dicke der Durchwurzelungsschicht zu ermitteln. Weitere Parameter der Landnutzung, die zur Berechnung der Interzeption und der Transpiration dienen, sind:
==Hydrological Response Units (HRUs)==
[[Bild:Theorie_Abb42.gif|thumb|Abbildung 42: Sectioning of a catchment into HRUs]]
If Runoff is determined through soil moisture simulation, the HRU concept is applied. This results in a catchment being sub-sectioned into a various amount of hydrological homogenous areas.


* Wurzeltiefe
[[Bild:Theorie_Abb43.gif|thumb|left|Abbildung 43: Assignment of soil type and land use to a HRU]]
* Bedeckungsgrad
* Jahresgang des Bedeckungsgrades
* Blattflächenindex
* Jahresgang des Blattflächenindexes


==Interzeption==
The depicted assignment of land use and soil type is valid for each HRU. The resulting amount of water out of a HRU is applied at the outlet of the elemt. Therefore all HRUs discharge their Water with the same time delay, independent of their position within the catchment.


In BlueM wird der Zufluss zum Interzeptionsspeicher (<code>Qzu<sub>IZ</sub></code>) als lineare Funktion des freien
Soil moisture calculation is computationally intensive and therefore very time-consuming. This is especially true if there are many HRUs in each sub-catchment.
Interzeptionsspeichers beschrieben.
<br clear="all"/>


:<math>Q_{zu_{IZ}} = k \cdot ( IZ_{max} - IZ_{akt})</math>
===Land use===
Providing information on land use is necessary to run the soil moisture calculation. E.g. the thickness of the rooted zone is determined by providing the root depth in the information regarding land use. Furthermore the parameters of land use are needed to calculate interception and transpiration. The parameters are:  
* root depth
* soil coverage
* annual pattern of soil coverage
* leaf area index
* annual pattern of the leaf area index


:mit:
:<code>k</code>: Proportionalitätsfaktor [-] ''(in BlueM: <code>k = 1.0</code>)''


Die maximale Interzeptionskapazität für landwirtschaftliche Nutzpflanzen geben {{:Literatur:Hoyningen-Huene_1983}}:
Providing Haude-Coefficients {{:Literatur:Haude_1954|}}{{:Literatur:Haude_1955|}} is possible by providing an annual pattern and assigning them to the desired land use. This allows for a better consideration of evaporation for each land use.


:<math>IZ_{max} = 0.935 + 0.498 \cdot LAI - 0.00575 \cdot LAI^2</math>
These Haude-Coefficients scale the valid potential grass reference-evaporation for the time step by their ratio to the corresponding Haude-Coefficient for grass.


:mit:
:<code>LAI</code>: Leaf Area Index (Blattflächenindex) [-]


Die Verdunstungsrate <code>EV</code> wird immer mit potentieller Rate angenommen. Da der Zufluss gleich dem Niederschlag über der Vegetation minus dem durchfallendem Niederschlag ist, ergibt sich eine einfache lineare Differentialgleichung:
===Soil type===


:<math>\frac{\mbox{d}IZ_{akt}}{\mbox{d}t} = k \cdot ( IZ_{max} - IZ_{akt}) - EV</math>
The soil moisture simulation is based on the non-linear calculation of the individual soil layers. The soil is divided into different soil layers with different soil textures. Each layer is simulated individually and interacts with the layers above or below. The parameters for the soil moisture calculation are the following physical soil properties for the soil textures of each individual layer:
* wilting point (<code>WP</code>)
* field capacity (<code>FK</code>)
* total pore volume (<code>GPV</code>)
* saturated hydraulic-conductivity (<code>k<sub>f</sub>-Wert</code>)
* maximum infiltration capacity (<code>MaxInf</code>)  
* maximum rate of capillary rise (<code>MaxKap</code>)
* Assignment to a soil category: sand, silt, clay


Durchfallender Niederschlag ergibt sich danach aus der Differenz zwischen dem Niederschlag
As few as one or as many as six soil layers can be entered. A division into three layers has proven to yield the best results. That is why the entered layers are always transformed into three calculation layers in BlueM internally. 
auf die Vegetation und der Interzeption.
* infiltration layer (standard thickness = 20 [cm])
* root layer (minimum thickness = 5 [cm])
* transport layer (minimum thickness = 5 [cm])


Obwohl der Ansatz aus Untersuchungen von landwirtschaftlichen Nutzpflanzen abgeleitet wurde, wird seine Gültigkeit vereinfacht auch für bewaldete Gebiete angenommen.
[[Bild:Theorie_Abb38.gif|thumb|300px|Abbildung 38: Example of the aggregation of soil layers for the root layer]]


Im Weiteren wird die Interzeptionsverdunstung berechnet. Die ermittelte Interzeptionsverdunstung wird von der potentiellen Verdunstung abgezogen, so dass für die weiteren Prozesse Transpiration und Evaporation nur diese '''reduzierte potentielle Verdunstung''' zur Verfügung steht.
The new characteristic soil parameters for the internally used layers are calculated by weighting the original parameters of the original layers according to the original thickness of these layers. Saturated hydraulic conductivity is calculated according to conservation of continuity of the flow. For vertical flow the velocity <code>v</code> is to be constant within a layer for a given flow due to the continuity of the flow. Therefore the hydraulic gradient is no longer constant.  


==Bodenfeuchtesimulation==


Die Angabe von Haude-Faktoren<ref name="Haude_1954">'''Haude, W.''' (1954): Zur praktischen Bestimmung der aktuellen und potentiellen Evapotranspiration. – Mitt. d. DWD, Bd. 8; Bad Kissingen</ref><ref name="Haude_1955">'''Haude, W.''' (1955): Zur Bestimmung der Verdunstung auf möglichst einfache Weise. - Mitt. Dt. Wetterd. 2 (11), Bad Kissingen (Dt. Wetterd.)</ref> zur besseren Berücksichtigung der Verdunstung je Landnutzung ist über Eingabe von Jahresgängen beliebig möglich und können den gewünschten Landnutzungen zugeordnet werden.
:<math>k_{f,v} = \frac{\sum d}{\left ( \frac{d_1}{k_1} + \cdots + \frac{d_i}{k_i} + \cdots + \frac{d_n}{k_n} \right )}</math>
 
:with
:<code>d<sub>i</sub></code> = depth of each original layer [mm]
:<code>k<sub>i</sub></code> = saturated hydraulic conductivity of each original layer [mm/h]
:<code>k<sub>f,v</sub></code> = saturated hydraulic conductivity of the internally used layer [mm/h]
 
The aggregation of the layers is depicted in [[:Bild:Theorie_Abb38.gif|Abbildung 38]].<br clear="all"/>


Diese Haudefaktoren skalieren über ihr Verhältnis zum entsprechenden Haudefaktor für Gras die für den Zeitschritt gültige potentielle Grasreferenzverdunstung.
==Interception==
In BlueM the inflow to the interception reservoir (<code>Q<sub>zu<sub>IC</sub></sub></code>) is described as a linear function of the free interception reservoir.


<u>Bodentyp / Bodenart:</u>
:<math>Q_{zu_{IC}} = k_{IC} \cdot ( \mbox{IC}_{max} - \mbox{IC}_{akt})</math>


Die Bodenfeuchtesimulation basiert auf einer nichtlinearen Berechnung der einzelnen Bodenhorizonte. Der Boden wird dabei in verschiedene Horizonte (Schichten) eingeteilt. Jede Schicht wird berechnet und mit den (falls vorhanden) darunter bzw. darüber liegenden Schichten abgeglichen. Als Parameter zur Bodenfeuchteberechnung dienen folgende bodenphysikalischen Größen:
:with:<code>k<sub>IC</sub></code> = 10.0 = Parameter to describe the fill rate of the interception reservoir [1/h] (Bug 409)


* Welkepunkt (WP)
The maximum interception capacity for agricultural crops according to {{:Literatur:Hoyningen-Huene_1983}} is:
* Feldkapazität (FK)
* Gesamtporenvolumen (GPV)
* Gesättigte Leitfähigkeit (k<sub>f</sub>-Wert)
* Maximale Infiltrationskapazität (Max.Inf.)
* Maximale Rate des Kapillaraufstiegs (Max.Kap.)
* Zuordnung zu einer Bodenart: Sand, Schluff, Ton


Die mögliche Anzahl der Bodenschichten läuft von minimal einer bis maximal sechs. Die Erfahrung zeigte, dass die besten Ergebnisse mit einer Aufteilung in drei Schichten erzielt werden konnten. Aus diesem Grund werden die eingegebenen Schichten programmintern immer in drei Horizonte unterteilt.  
:<math>\mbox{IC}_{max} = 0.935 + 0.498 \cdot LAI - 0.00575 \cdot LAI^2</math>


* Infiltrationsschicht (Standarddicke [cm] = 20)
:with
* Durchwurzelte Schicht (Mindestdicke [cm] = 5)
:<code>LAI</code> = Leaf Area Index [-]
* Transportschicht (Mindestdicke [cm] = 5)


Die Berechnung der neuen Bodenkennwerte für die programmintern verwendeten Schichten erfolgt durch eine Gewichtung entsprechend den vorgegebenen original Dicken der Schichten. Im Fall der gesättigten Leitfähigkeit läuft die Berechnung nach dem Prinzip der Erhaltung der Kontinuität der Strömung ab. Bei senkrechter Strömung soll aufgrund der Kontinuität der Strömung die Geschwindigkeit v bei gegebener Durchflussmenge in einer programminternen Schicht denselben Wert besitzen. Damit ist das hydraulische Gefälle nicht mehr konstant.
The rate of evaporation is assumed to be equal to the rate of potential evaporation (= <code>ET<sub>p</sub></code>). A simple differential equation can be derived due to the fact that inflow is equal to the amount of rain above the vegetation minus the rain which penetrates it :


[[Bild:Theorie_Abb38.gif|thumb|300px|Abbildung 38: Beispiel der Zusammenfassung von Bodenschichten anhand der
:<math>\frac{\mbox{dIC}}{\mbox{d}t} = k_{IC} \cdot ( \mbox{IC}_{max} - \mbox{IC}(t)) - ET_p</math>
Durchwurzelungsschicht]]


:<math>k_{f,v} = \frac{\sum d}{\left ( \frac{d_1}{k_1} + \cdots + \frac{d_i}{k_i} + \cdots + \frac{d_n}{k_n} \right )}</math>
Therefore the amount of penetrating rain can be determined through the subtraction of interception from rainfall onto the vegetation.


:mit
To simplify things it is assumed that this approach is valid for wooded areas, although this approach was derived out of studies for agricultural crops.
:<code>d<sub>i</sub></code> = anteilige Schichtdicke der jeweiligen original Schicht [mm]
:<code>k<sub>i</sub></code> = gesättigte Leitfähigkeit der jeweiligen original Schicht [mm/h]
Furthermore the interception evaporation is calculated, which is subtracted from the potential evaporation which leads to a '''reduced potential evaporation''' remaining for the following processes of transpiration and evaporation.
:<code>k<sub>f,v</sub></code> = gesättigte Leitfähigkeit der programmintern verwendeten Schicht [mm/h]


Die Zusammenfassung der Schichten ist in der [[:Bild:Theorie_Abb38.gif|Abbildung 38]] dokumentiert.


Auf der Basis der bereichsweisen linearen Abbildung der die Bodenfeuchte beeinflussenden Prozessfunktionen Infiltration, aktuelle Verdunstung (Evaporation + Transpiration), Perkolation, Interflow und Kapillaraufstieg wird für eine Bodenschicht die Wasserbilanzgleichung gelöst. Die Eingangsgröße für die Evaporation und Transpiration ermittelt sich aus der potentiellen Verdunstung:
==Soil moisture calculation==
The water balance equation for the soil layer is solved by using a stepwise linear approach for the processes effecting soil moisture, which are '''Infiltration''', '''Evaporation''', '''Transpiration''', '''Percolation''', '''Interflow''' and '''Capillary-Rise'''. The input value for evaporation and transpiration is determined through the reduced potential evaporation due to interception evaporation.


Die zu lösende Gleichung ist:  
The equation to be solved is as follows:


[[Bild:Theorie_Abb39b.gif|thumb]]
[[Bild:Theorie_Abb39b.gif|thumb]]
Line 86: Line 96:
:<math>\frac{d\theta(t)}{d\mbox{t}} = \mbox{Inf}(t) - \mbox{Perk}(t) - \mbox{Eva}_{akt}(t) - \mbox{Trans}_{akt}(t) - \mbox{Int}(t) + \mbox{Kap}(t)</math>
:<math>\frac{d\theta(t)}{d\mbox{t}} = \mbox{Inf}(t) - \mbox{Perk}(t) - \mbox{Eva}_{akt}(t) - \mbox{Trans}_{akt}(t) - \mbox{Int}(t) + \mbox{Kap}(t)</math>


:mit:
:with:
:<code>&theta;(t)</code> = aktuelle Bodenfeuchte
:<code>&theta;(t)</code> = current soil moisture
:<code>Inf(t)</code> = Infiltration in den Boden
:<code>Inf(t)</code> = infiltration into the soil
:<code>Perk(t)</code> = Perkolation (Durchsickerung)
:<code>Perk(t)</code> = percolation
:<code>Eva<sub>akt</sub>(t)</code> = aktuelle Evaporation
:<code>Eva<sub>akt</sub>(t)</code> = actual evaporation
:<code>Trans<sub>akt</sub>(t)</code> = aktuelle Transpiration
:<code>Trans<sub>akt</sub>(t)</code> = actual transpiration
:<code>Int(t)</code> = Interflow
:<code>Int(t)</code> = interflow
:<code>Kap(t)</code> = Kapillaraufstieg
:<code>Kap(t)</code> = capillary-rise


Infiltration, Perkolation, Evaporation, Transpiration, Interflow und Kapillaraufstieg sind von der aktuellen Bodenfeuchte abhängig. In der Simulation wird diese Abhängigkeit durch folgende Funktionsverläufe beschrieben.
Infiltration, Percolation, Evaporation, Transpiration, Interflow and Capillary-Rise are dependent on the current soil moisture. In the simulation this dependency is described by the following function curves.


<u>Infiltration</u>
[[Bild:Theorie_Abb40.gif|thumb|500px|Abbildung 40: Depiction of selected soil process functions]]


:with:
:<code>k<sub>f</sub></code> = saturated hydraulic conductivity
:<code>nFK</code> = available water capacity (<code>nFK = FK - WP</code>)
:<code>WP</code> = wilting point
:<code>FK</code> = field capacity
:<code>GPV</code> = total pore volume
:<code>I</code> = gradient [-]
:<code>f<sub>PK</sub></code> = soil specific scaling factor for the percolation function
:<code>f<sub>Eva</sub></code> = soil specific scaling factor for the evaporation function
:<code>f<sub>TP</sub></code> = soil specific scaling factor for the transpiration function
:<code>f<sub>1,Int</sub></code> = soil specific scaling factor for the interflow function
:<code>f<sub>2,Int</sub></code> = soil specific scaling factor for the interflow function
:<code>n<sub>Int</sub></code> = soil specific scaling factor for the interflow function
:<code>n<sub>TP</sub></code> = Krümmungsparameter der Transpirationsfunktion
Program parameters are calculated internally. The user only needs to supply the characteristic soil parameters <code>k<sub>f</sub></code>, <code>WP</code>, <code>FK</code> and <code>GPV</code>.
The simulation takes place with a newly developed  [[Speicherbaustein|Building-Block]] for the simulation of reservoirs, whichs process function are to be mapped through a stepwise linear approach.
====Infiltration====
[[Bild:Infiltration.png|thumb|300px|Infiltration function in BlueM in comparison to the function according to  {{:Literatur:Holtan_1961|Holtan}} for a sand-soil]]
The original approach according to {{:Literatur:Holtan_1961}}:
:<math>\mbox{Inf}(\theta(t)) = \mbox{a}_v \cdot \left ( \mbox{GPV} - \theta(t) \right )^{1,4} + k_f</math>  
:<math>\mbox{Inf}(\theta(t)) = \mbox{a}_v \cdot \left ( \mbox{GPV} - \theta(t) \right )^{1,4} + k_f</math>  
:(Ansatz nach HOLTAN<ref name="holtan">'''Holtan, H.N.''' (1961): A Concept for Infiltration Estimates in Watershed Engineering, U.S. Department of Agriculture Publication, ARS 41-51.</ref>)
:with
:<code>a<sub>v</sub></code> = Vegetation parameter (between 0,1 and 1,0)  


<u>Perkolation</u>
is used in a modified form in BlueM:


Der aktuell verwendete Ansatz:  
:<math>\mbox{Inf}(\theta(t)) = \begin{cases} \mbox{MaxInf} + k_f, & 0 < \theta(t) < 0,1 \cdot \mbox{nFK} \\ \mbox{MaxInf} \cdot \left( \frac{\mbox{GPV} - \theta(t)}{\mbox{GPV} - 0,1 \cdot \mbox{nFK}} \right) ^{1,4} + k_f, & \theta(t) \ge 0,1 \cdot \mbox{nFK} \end{cases}</math>
 
it needs to be noted that this function only describes the '''potential Infiltration'''. Actual Infiltration is limited to the available amount of rain. The modification is a results of the consideration that if it rains on a very dry soil the air within the soil cannot escape and thereby limits maximum infiltration. This leads to a stop of exponential increase in contrast to the original approach of Holtan. ("Flowerpot effect")


:<math>\mbox{Perk}(\theta(t)) = \begin{cases} 0, & \theta(t) \le \mbox{f}_{PK} \cdot \mbox{nFK} + \mbox{WP} \\ k_f \cdot \left ( \frac{\theta(t) - \left ( \mbox{f}_{PK} \cdot \mbox{nFK} + \mbox{WP} \right )}{\mbox{GPV} - \left ( \mbox{f}_{PK} \cdot \mbox{nFK} + \mbox{WP} \right )} \right )^{n_{PK}}, & \theta(t) > \mbox{f}_{PK} \cdot \mbox{nFK} + \mbox{WP} \end{cases}</math>
:(mod. Ansatz nach OSTROWSKI, 1992<ref name="ostrowski_1992">'''Ostrowski, M.''' (1992): Ein universeller Baustein zur Simulation hydrologischer Prozesse, Wasser und Boden, Heft 11 ({{file|pdf|Ostrowski_1992_Universeller_Baustein.pdf|PDF}})</ref>, BEAR, 1988<ref name="bear_1988">'''Bear, J.''' (1988): Dynamics of fluids in porous media, American Elsevier Environmental Science Series ([http://books.google.com/books?hl=en&lr=&id=lurrmlFGhTEC&oi=fnd&pg=PP9&sig=GZbr6T5bMHLmCFUNorn3bd_DPV4 books.google.com])</ref>)


sollte in den Ansatz nach VAN GENUCHTEN<ref>'''van Genuchten, M. Th.''' (1980): A closed-fom equation for predicting the hydraulic conductivity of unsaturated soils - Soil Science Society of America Journal, 44, pp 892-898 ([http://hydro.nevada.edu/courses/gey719/vg.pdf hydro.nevada.edu])</ref> geändert werden (siehe Bug 51).
====Percolation====


:<math>\mbox{Perk}(\theta(t)) = k_f \cdot \theta_e^a \cdot \left [ 1 - \left ( 1 - \theta_e^{\frac{n_{PK}}{n_{PK}-1}} \right )^{\frac{n_{PK}-1}{n_{PK}}} \right ]^2 \quad \quad \quad \quad \mbox{mit} \quad a = 0,5</math>
:<math>\mbox{Perk}(\theta(t)) = \begin{cases} 0, & \theta(t) \le \mbox{f}_{PK} \cdot \mbox{nFK} + \mbox{WP} \\ k_f \cdot \left ( \frac{\theta(t) - \left ( \mbox{f}_{PK} \cdot \mbox{nFK} + \mbox{WP} \right )}{\mbox{GPV} - \left ( \mbox{f}_{PK} \cdot \mbox{nFK} + \mbox{WP} \right )} \right )^{n_{PK}}, & \theta(t) > \mbox{f}_{PK} \cdot \mbox{nFK} + \mbox{WP} \end{cases}</math>


:<math>\theta_e = \frac{\theta(t)-\mbox{WP}}{\mbox{GPV}-\mbox{WP}}</math>
:mod. approach according to {{:Literatur:Ostrowski_1992}}, {{:Literatur:Bear_1998}}


:(Ansatz nach WÖSTEN und VAN GENUCHTEN, 1988<ref>'''Wösten, J.H.M., van Genuchten, M.''' (1988): Using texture and other soil properties to predict the unsaturated soil hydraulic functions, Soil Science Society of America Journal ([http://www.ars.usda.gov/SP2UserFiles/Place/53102000/pdf_pubs/P1040.pdf ars.usda.gov])</ref>, BENECKE, 1992<ref>'''Benecke, P.''' (1992): Gedanken zur Waldbodenrestaurierung mit Bodenbearbeitung, [http://pica1l.lhb.tu-darmstadt.de/CHARSET=ISO-8859-1/DB=LHBDA/FKT=6015/FRM=%2BNUM%2B0002-5860/IMPLAND=Y/LNG=DU/LRSET=1/MAT=9001%2505TP%2505%2506/SET=1/SID=f68514bd-1/SRT=YOP/TTL=1/SHW?FRST=1 Allg. Forst Zeitschr.], 47:542-545 <span style="color:red;">???</span></ref>.
:''&rarr; zu modifizieren in [[Talk:Bodenfeuchtesimulation#Perkolation nach van Genuchten|Ansatz nach van Genuchten]]''


<u>Interflow</u>
====Interflow====


Der Interflow ist relativ unabhängig von den Bodenparametern und hängt neben der Bodenfeuchte lediglich vom Gefälle der jeweiligen Elementarfläche ab (siehe Bug 28):
Interflow is realtivly independent of soil parameters and depends on soil moisture and slope of the individual HRU. (refer to Bug 28):


:<math>\mbox{Int}(\theta(t)) = \begin{cases} 0, & \theta(t) \le \mbox{f}_{1,Int} \cdot \mbox{nFK} \\ \theta(t)^{\mbox{n}_{Int}} \cdot \frac{I}{\sqrt{1+I^2}}, & \mbox{f}_{1,Int} \cdot \mbox{nFK} < \theta(t) \le \mbox{f}_{2,Int} \cdot \mbox{nFK} \\ \mbox{f}_{2,Int} \cdot \mbox{nFK}, & \theta(t) > \mbox{f}_{2,Int} \cdot \mbox{nFK} \end{cases}</math>
:<math>\mbox{Int}(\theta(t)) = \begin{cases} 0, & \theta(t) \le \mbox{f}_{1,Int} \cdot \mbox{nFK} \\ \theta(t)^{\mbox{n}_{Int}} \cdot \frac{I}{\sqrt{1+I^2}}, & \mbox{f}_{1,Int} \cdot \mbox{nFK} < \theta(t) \le \mbox{f}_{2,Int} \cdot \mbox{nFK} \\ \mbox{f}_{2,Int} \cdot \mbox{nFK}, & \theta(t) > \mbox{f}_{2,Int} \cdot \mbox{nFK} \end{cases}</math>


<u>Evaporation</u>
====Evaporation====


Für die Bodenverdunstung wird die an die Landnutzung angepasste, potentielle Verdunstung auf eine potentielle Verdunstung für Brachland umgerechnet.
For the evaporation out of the soil the determined potential evaporation, which was adjusted to land use, is converted into evaporation for fallow land.


:<math>\mbox{Eva}(\theta(t)) = \begin{cases} 0, & \theta(t) \le \mbox{WP} \\ \mbox{f}_{Eva} \cdot \left ( \frac{\theta(t)-\mbox{WP}}{\mbox{GPV}-\mbox{WP}} \right ), & \theta(t) > \mbox{WP} \end{cases}</math>
:<math>\mbox{Eva}(\theta(t)) = \begin{cases} 0, & \theta(t) \le \mbox{WP} \\ \mbox{f}_{Eva} \cdot \left ( \frac{\theta(t)-\mbox{WP}}{\mbox{GPV}-\mbox{WP}} \right ), & \theta(t) > \mbox{WP} \end{cases}</math>


<u>Transpiration</u>
====Transpiration====


:<math>\mbox{Trans}(\theta(t)) = \begin{cases} 0, & \theta(t) \le \mbox{f}_{TP} \cdot \mbox{nFK} + \mbox{WP} \\ \mbox{f}_{TP} \cdot \left ( \frac{\theta(t) - \mbox{f}_{TP} \cdot \mbox{nFK} + \mbox{WP}}{\mbox{GPV} - \mbox{f}_{TP} \cdot \mbox{nFK} + \mbox{WP}} \right )^{n_{TP}}, & \theta(t) > \mbox{f}_{TP} \cdot \mbox{nFK} + \mbox{WP} \end{cases}</math>
:<math>\mbox{Trans}(\theta(t)) = \begin{cases} 0, & \theta(t) \le \mbox{f}_{TP} \cdot \mbox{nFK} + \mbox{WP} \\ \mbox{f}_{TP} \cdot \left ( \frac{\theta(t) - \mbox{f}_{TP} \cdot \mbox{nFK} + \mbox{WP}}{\mbox{GPV} - \mbox{f}_{TP} \cdot \mbox{nFK} + \mbox{WP}} \right )^{n_{TP}}, & \theta(t) > \mbox{f}_{TP} \cdot \mbox{nFK} + \mbox{WP} \end{cases}</math>


[[Bild:Theorie_Abb40.gif|thumb|500px|Abbildung 40: Darstellung ausgewählter Bodenprozessfunktionen]]
==Literature==
 
<references/>
:mit:
:<code>a<sub>v</sub></code> = Infiltrationsfaktor nach HOLTAN<ref name="holtan" /> (in BlueM <code>a<sub>v</sub> = 1</code>)
:<code>k<sub>f</sub></code> = Durchlässigkeitsbeiwert des gesättigten Bodens
:<code>nFK</code> = nutzbare Feldkapazität (<code>nFK = FK - WP</code>)
:<code>WP</code> = Welkepunkt
:<code>FK</code> = Feldkapazität
:<code>GPV</code> = gesamtes Porenvolumen
:<code>I</code> = Gefälle [-]
:<code>f<sub>PK</sub></code> = bodenabhängiger Skalierungsfaktor der Perkolationsfunktion
:<code>n<sub>PK</sub></code> = bodenabhängiger Krümmungsparameter der Perkolationsfunktion (3 / 7 / 9)
:<code>f<sub>Eva</sub></code> = bodenabhängiger Skalierungsfaktor der Evaporationsfunktion
:<code>f<sub>TP</sub></code> = bodenabhängiger Skalierungsfaktor der Transpirationsfunktion
:<code>f<sub>1,Int</sub></code> = bodenabhängiger Skalierungsfaktor für die Interflowfunktion (0.4 / 0.7 / 0.75)
:<code>f<sub>2,Int</sub></code> = bodenabhängiger Skalierungsfaktor für die Interflowfunktion (0.7 / 0.9 / 0.9)
:<code>n<sub>Int</sub></code> = bodenabhängiger Krümmungsparameter der Interflowfunktion (2 / 7 / 7)
:<code>n<sub>TP</sub></code> = Krümmungsparameter der Transpirationsfunktion
 
Die Programmparameter werden intern berechnet. Der Anwender muss lediglich die Bodenkennwerte <code>k<sub>f</sub></code>, <code>WP</code>, <code>FK</code> und <code>GPV</code> angeben.
 
Die Simulation erfolgt mit einem neu entwickelten [[Speicherbaustein|Baustein]] zur Simulation von Speichern, deren Prozessfunktionen bereichsweise linear abzubilden sind.
 
<u>Elementarflächen:</u>
 
[[Bild:Theorie_Abb42.gif|thumb|Abbildung 42: Aufteilung eines Einzugsgebietselementes in Elementarflächen]]
 
Wird mit der Bodenfeuchtesimulation die Abflussbildung berechnet, wird gleichzeitig das Elementarflächenkonzept angewandt. Ein Einzugsgebietselement wird dabei in beliebig viele hydrologisch homogene Flächen unterteilt.
 
[[Bild:Theorie_Abb43.gif|thumb|left|Abbildung 42: Zuordnung von Bodentyp und Landnutzung zu Elementarflächen]]
 
Für jede Elementarfläche gilt die gezeigte Zuordnung von Landnutzung und Bodentyp. Die aus einer Elementarfläche resultierende Wassermenge wird am Elementausgang angesetzt, d.h. alle Elementarflächen geben unabhängig ihrer Lage im Einzugsgebiet Wasser mit der gleichen zeitlichen Verzögerung ab.
 
Die Berechnung der Bodenfeuchte ist sehr rechen- und damit auch zeitintensiv. Dies gilt insbesondere dann, wenn viele Elementarflächen je Teilgebiet eingerichtet sind. <span class="TALSIM">In TALSIM 2.2 besteht jetzt die Möglichkeit Elementarflächen programmintern aggregieren zu lassen, d.h. nach Vorgabe eines Grenzwertes werden alle Elementarflächen, deren Flächenanteil am Teilgebiet kleiner als der Grenzwert ist zu einer Elementarfläche flächengewichtet zusammengefasst. Dies ist besonders dann sinnvoll, wenn viele Elementarflächen mit Anteilen unter 5% vorhanden sind.</span>
 
{{HierarchieFuss}}


[[Kategorie:BlueM Theorie]]
[[Kategorie:BlueM Theorie]]

Latest revision as of 01:50, 27 May 2022

BlueM_icon.png BlueM.Sim | Download | Application | Theory | Development

All process-values which are calculated through soil moisture simulation are depicted in the following picture.

Abbildung 39: calculated process-values through soil moisture simulation

Hydrological Response Units (HRUs)

Abbildung 42: Sectioning of a catchment into HRUs

If Runoff is determined through soil moisture simulation, the HRU concept is applied. This results in a catchment being sub-sectioned into a various amount of hydrological homogenous areas.

Abbildung 43: Assignment of soil type and land use to a HRU

The depicted assignment of land use and soil type is valid for each HRU. The resulting amount of water out of a HRU is applied at the outlet of the elemt. Therefore all HRUs discharge their Water with the same time delay, independent of their position within the catchment.

Soil moisture calculation is computationally intensive and therefore very time-consuming. This is especially true if there are many HRUs in each sub-catchment.

Land use

Providing information on land use is necessary to run the soil moisture calculation. E.g. the thickness of the rooted zone is determined by providing the root depth in the information regarding land use. Furthermore the parameters of land use are needed to calculate interception and transpiration. The parameters are:

  • root depth
  • soil coverage
  • annual pattern of soil coverage
  • leaf area index
  • annual pattern of the leaf area index


Providing Haude-Coefficients [1][2] is possible by providing an annual pattern and assigning them to the desired land use. This allows for a better consideration of evaporation for each land use.

These Haude-Coefficients scale the valid potential grass reference-evaporation for the time step by their ratio to the corresponding Haude-Coefficient for grass.


Soil type

The soil moisture simulation is based on the non-linear calculation of the individual soil layers. The soil is divided into different soil layers with different soil textures. Each layer is simulated individually and interacts with the layers above or below. The parameters for the soil moisture calculation are the following physical soil properties for the soil textures of each individual layer:

  • wilting point (WP)
  • field capacity (FK)
  • total pore volume (GPV)
  • saturated hydraulic-conductivity (kf-Wert)
  • maximum infiltration capacity (MaxInf)
  • maximum rate of capillary rise (MaxKap)
  • Assignment to a soil category: sand, silt, clay

As few as one or as many as six soil layers can be entered. A division into three layers has proven to yield the best results. That is why the entered layers are always transformed into three calculation layers in BlueM internally.

  • infiltration layer (standard thickness = 20 [cm])
  • root layer (minimum thickness = 5 [cm])
  • transport layer (minimum thickness = 5 [cm])
Abbildung 38: Example of the aggregation of soil layers for the root layer

The new characteristic soil parameters for the internally used layers are calculated by weighting the original parameters of the original layers according to the original thickness of these layers. Saturated hydraulic conductivity is calculated according to conservation of continuity of the flow. For vertical flow the velocity v is to be constant within a layer for a given flow due to the continuity of the flow. Therefore the hydraulic gradient is no longer constant.


[math]\displaystyle{ k_{f,v} = \frac{\sum d}{\left ( \frac{d_1}{k_1} + \cdots + \frac{d_i}{k_i} + \cdots + \frac{d_n}{k_n} \right )} }[/math]
with
di = depth of each original layer [mm]
ki = saturated hydraulic conductivity of each original layer [mm/h]
kf,v = saturated hydraulic conductivity of the internally used layer [mm/h]

The aggregation of the layers is depicted in Abbildung 38.

Interception

In BlueM the inflow to the interception reservoir (QzuIC) is described as a linear function of the free interception reservoir.

[math]\displaystyle{ Q_{zu_{IC}} = k_{IC} \cdot ( \mbox{IC}_{max} - \mbox{IC}_{akt}) }[/math]
with:kIC = 10.0 = Parameter to describe the fill rate of the interception reservoir [1/h] (Bug 409)

The maximum interception capacity for agricultural crops according to von Hoyningen-Huene (1983)[3] is:

[math]\displaystyle{ \mbox{IC}_{max} = 0.935 + 0.498 \cdot LAI - 0.00575 \cdot LAI^2 }[/math]
with
LAI = Leaf Area Index [-]

The rate of evaporation is assumed to be equal to the rate of potential evaporation (= ETp). A simple differential equation can be derived due to the fact that inflow is equal to the amount of rain above the vegetation minus the rain which penetrates it :

[math]\displaystyle{ \frac{\mbox{dIC}}{\mbox{d}t} = k_{IC} \cdot ( \mbox{IC}_{max} - \mbox{IC}(t)) - ET_p }[/math]

Therefore the amount of penetrating rain can be determined through the subtraction of interception from rainfall onto the vegetation.

To simplify things it is assumed that this approach is valid for wooded areas, although this approach was derived out of studies for agricultural crops.

Furthermore the interception evaporation is calculated, which is subtracted from the potential evaporation which leads to a reduced potential evaporation remaining for the following processes of transpiration and evaporation.


Soil moisture calculation

The water balance equation for the soil layer is solved by using a stepwise linear approach for the processes effecting soil moisture, which are Infiltration, Evaporation, Transpiration, Percolation, Interflow and Capillary-Rise. The input value for evaporation and transpiration is determined through the reduced potential evaporation due to interception evaporation.

The equation to be solved is as follows:

Theorie Abb39b.gif
[math]\displaystyle{ \frac{d\theta(t)}{d\mbox{t}} = \mbox{Inf}(t) - \mbox{Perk}(t) - \mbox{Eva}_{akt}(t) - \mbox{Trans}_{akt}(t) - \mbox{Int}(t) + \mbox{Kap}(t) }[/math]
with:
θ(t) = current soil moisture
Inf(t) = infiltration into the soil
Perk(t) = percolation
Evaakt(t) = actual evaporation
Transakt(t) = actual transpiration
Int(t) = interflow
Kap(t) = capillary-rise

Infiltration, Percolation, Evaporation, Transpiration, Interflow and Capillary-Rise are dependent on the current soil moisture. In the simulation this dependency is described by the following function curves.

Abbildung 40: Depiction of selected soil process functions
with:
kf = saturated hydraulic conductivity
nFK = available water capacity (nFK = FK - WP)
WP = wilting point
FK = field capacity
GPV = total pore volume
I = gradient [-]
fPK = soil specific scaling factor for the percolation function
fEva = soil specific scaling factor for the evaporation function
fTP = soil specific scaling factor for the transpiration function
f1,Int = soil specific scaling factor for the interflow function
f2,Int = soil specific scaling factor for the interflow function
nInt = soil specific scaling factor for the interflow function
nTP = Krümmungsparameter der Transpirationsfunktion

Program parameters are calculated internally. The user only needs to supply the characteristic soil parameters kf, WP, FK and GPV.

The simulation takes place with a newly developed Building-Block for the simulation of reservoirs, whichs process function are to be mapped through a stepwise linear approach.

Infiltration

Infiltration function in BlueM in comparison to the function according to Holtan[4] for a sand-soil

The original approach according to Holtan (1961)[4]:

[math]\displaystyle{ \mbox{Inf}(\theta(t)) = \mbox{a}_v \cdot \left ( \mbox{GPV} - \theta(t) \right )^{1,4} + k_f }[/math]
with
av = Vegetation parameter (between 0,1 and 1,0)

is used in a modified form in BlueM:

[math]\displaystyle{ \mbox{Inf}(\theta(t)) = \begin{cases} \mbox{MaxInf} + k_f, & 0 \lt \theta(t) \lt 0,1 \cdot \mbox{nFK} \\ \mbox{MaxInf} \cdot \left( \frac{\mbox{GPV} - \theta(t)}{\mbox{GPV} - 0,1 \cdot \mbox{nFK}} \right) ^{1,4} + k_f, & \theta(t) \ge 0,1 \cdot \mbox{nFK} \end{cases} }[/math]

it needs to be noted that this function only describes the potential Infiltration. Actual Infiltration is limited to the available amount of rain. The modification is a results of the consideration that if it rains on a very dry soil the air within the soil cannot escape and thereby limits maximum infiltration. This leads to a stop of exponential increase in contrast to the original approach of Holtan. ("Flowerpot effect")


Percolation

[math]\displaystyle{ \mbox{Perk}(\theta(t)) = \begin{cases} 0, & \theta(t) \le \mbox{f}_{PK} \cdot \mbox{nFK} + \mbox{WP} \\ k_f \cdot \left ( \frac{\theta(t) - \left ( \mbox{f}_{PK} \cdot \mbox{nFK} + \mbox{WP} \right )}{\mbox{GPV} - \left ( \mbox{f}_{PK} \cdot \mbox{nFK} + \mbox{WP} \right )} \right )^{n_{PK}}, & \theta(t) \gt \mbox{f}_{PK} \cdot \mbox{nFK} + \mbox{WP} \end{cases} }[/math]
mod. approach according to Ostrowski (1992)[5], Bear (1988)[6]
→ zu modifizieren in Ansatz nach van Genuchten

Interflow

Interflow is realtivly independent of soil parameters and depends on soil moisture and slope of the individual HRU. (refer to Bug 28):

[math]\displaystyle{ \mbox{Int}(\theta(t)) = \begin{cases} 0, & \theta(t) \le \mbox{f}_{1,Int} \cdot \mbox{nFK} \\ \theta(t)^{\mbox{n}_{Int}} \cdot \frac{I}{\sqrt{1+I^2}}, & \mbox{f}_{1,Int} \cdot \mbox{nFK} \lt \theta(t) \le \mbox{f}_{2,Int} \cdot \mbox{nFK} \\ \mbox{f}_{2,Int} \cdot \mbox{nFK}, & \theta(t) \gt \mbox{f}_{2,Int} \cdot \mbox{nFK} \end{cases} }[/math]

Evaporation

For the evaporation out of the soil the determined potential evaporation, which was adjusted to land use, is converted into evaporation for fallow land.

[math]\displaystyle{ \mbox{Eva}(\theta(t)) = \begin{cases} 0, & \theta(t) \le \mbox{WP} \\ \mbox{f}_{Eva} \cdot \left ( \frac{\theta(t)-\mbox{WP}}{\mbox{GPV}-\mbox{WP}} \right ), & \theta(t) \gt \mbox{WP} \end{cases} }[/math]

Transpiration

[math]\displaystyle{ \mbox{Trans}(\theta(t)) = \begin{cases} 0, & \theta(t) \le \mbox{f}_{TP} \cdot \mbox{nFK} + \mbox{WP} \\ \mbox{f}_{TP} \cdot \left ( \frac{\theta(t) - \mbox{f}_{TP} \cdot \mbox{nFK} + \mbox{WP}}{\mbox{GPV} - \mbox{f}_{TP} \cdot \mbox{nFK} + \mbox{WP}} \right )^{n_{TP}}, & \theta(t) \gt \mbox{f}_{TP} \cdot \mbox{nFK} + \mbox{WP} \end{cases} }[/math]

Literature

  1. Haude, W. (1954): Zur praktischen Bestimmung der aktuellen und potentiellen Evapotranspiration. – Mitteilungen des DWD, Bd. 8; Bad Kissingen
  2. Haude, W. (1955): Zur Bestimmung der Verdunstung auf möglichst einfache Weise. Mitteilungen des DWD, 2 (11), Bad Kissingen
  3. von Hoyningen-Huene, J. (1983): Die Interzeption des Niederschlages in landwirtschaftlichen Pflanzenbeständen. DVWK Schriften, Nr. 57, S. 1 - 53, PDF information.png
  4. 4.0 4.1 Holtan, H.N. (1961): A Concept for Infiltration Estimates in Watershed Engineering, U.S. Department of Agriculture, Agricultural Research Service, Bulletin 41-51, p. 25
  5. Ostrowski, M. (1992): Ein universeller Baustein zur Simulation hydrologischer Prozesse, Wasser und Boden, Heft 11 (PDF information.png)
  6. Bear, J. (1988): Dynamics of fluids in porous media, American Elsevier Environmental Science Series (books.google.com)