SCS-Method: Difference between revisions
(Vorsicht) |
m (remove hierarchy extension template) |
||
(9 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{ | {{BlueM.Sim_nav}} | ||
'''<big> | {{BlueMTheory_nav}} | ||
'''<big>Event specific run-off coefficient on the basis of the Curve-Number-Method (CN-Method)of the Soil-Conservation-Service (SCS)</big>''' | |||
__TOC__ | __TOC__ | ||
== | ==Theory== | ||
The Method applied in BlueM is a further development of the CN-Method ({{:Literatur:USDA_1964}}) by {{:Literatur:Zaiß_1989}} | |||
[[Bild: | [[Bild:Theorie_Abb36.gif|thumb|Abbildung 36: Dependency of the run-off coefficient on previous history]] | ||
By supplying a soil type and land use dependent CN | |||
(refer to{{:Literatur:DVWK_1991}}) an antecedent dependent initial loss as well as an antecedent dependent relationship of the run-off coefficient on the accumulated amount of rain up to a desired point in time can be determined. This results in an increasing run-off coefficient due to the accumulating rain amount in the course of a rainfall event. | |||
A current run-off coefficient can be determined in dependency of the quantified previous history, as described above, by using the area specific and for average ''antecedent moisture conditions (AMC)'' ({{:Literatur:USDA_1964}}) valid CN. | |||
In [[:Bild:Theorie_Abb36.gif|Abbildung 36]] the development of the run-off coefficient depending on previous history is depicted for different CN. | |||
[[Bild:Theorie_Abb37.gif|thumb|left|Abbildung 37: Dependency of the run-off coefficient on the accumulated amount of rain]] | |||
As soil moisture increases during the course of a rainfall event the conditions for run-off development change which is why the run-off coefficient is additionally adjusted during a rainfall event as a function of accumulated rain. | |||
This correlation is depicted for different CN in [[:Bild:Theorie_Abb37.gif|Abbildung 37]]. | |||
;Attention:The CN-Method was developed for the simulation of solitary events on a daily basis. A further development is being undertaken for continuous simulation with smaller time steps.(refer to Bug 23 and [[Talk:SCS-Verfahren#Weiterentwicklung_.28Bug_23.29|Discussion]])<br clear="all"/> | |||
</ | |||
==Calculation== | |||
===one-time calculated parameters=== | |||
== | '''Input:''' <code>CN<sub>II</sub></code> | ||
=== | |||
''' | |||
<div class="comment"> | <div class="comment"> | ||
Die Umrechnung von <code>CN<sub>II</sub></code> in <code>CN<sub>I</sub></code> bedeutet, dass davon ausgegangen wird, dass das Gebiet zu Beginn der Simulation trocken ist?! | Die Umrechnung von <code>CN<sub>II</sub></code> in <code>CN<sub>I</sub></code> bedeutet, dass davon ausgegangen wird, dass das Gebiet zu Beginn der Simulation trocken ist?! | ||
</div> | </div> | ||
''' | '''Conversion''' of <code>CN<sub>II</sub></code> to <code>CN<sub>I</sub></code>: | ||
:<math>CN_I = \frac{CN_{II}}{(2.3340 - 0.01334 \cdot CN_{II})}</math> | :<math>CN_I = \frac{CN_{II}}{(2.3340 - 0.01334 \cdot CN_{II})}</math> | ||
''' | '''Maximum retention capability of the area''' (storage capacity) <code>S<sub>max</sub></code> [mm]: | ||
:<math>S_{max} = \frac{25400}{CN_I} - 254</math> | :<math>S_{max} = \frac{25400}{CN_I} - 254</math> | ||
''' | '''area specific initial loss''' <code>I<sub>a</sub></code> [mm]: | ||
:<math>I_a = a \cdot S_{max}</math> | :<math>I_a = a \cdot S_{max}</math> | ||
: | :with | ||
:<code>a</code> = | :<code>a</code> = constant, originally set to <code>0,2</code> {{:Literatur:USDA_1964|}}, adjusted to European conditions in BlueM as <code>0,05</code>{{:Literatur:DVWK_1991|}} | ||
'''Krümmungsparameter''' <code>CVW</code>: | '''Krümmungsparameter''' <code>CVW</code>: | ||
Line 55: | Line 51: | ||
</blockquote> | </blockquote> | ||
=== | ===continuously calculated parameters=== | ||
==== | ====previous history==== | ||
Previous history is quantified through the 21-day-antecedent rain index <code>V<sub>N</sub></code>: | |||
:<math>V_N = \sum_{j=0}^{21} C(j)^j \cdot h_{N,j}</math> | :<math>V_N = \sum_{j=0}^{21} C(j)^j \cdot h_{N,j}</math> | ||
:''Gl. 2.1 in {{:Literatur:Zaiß_1989}}'' | :''Gl. 2.1 in {{:Literatur:Zaiß_1989}}'' | ||
: | :with | ||
:<code>h<sub>N,j</sub></code> = | :<code>h<sub>N,j</sub></code> = rain height of the preceding day j (<code>j = 0</code> is the current day) | ||
:<code>C(j)</code> = | :<code>C(j)</code> = factor, which describes the influence of the preceding day j | ||
Seasonal influence is considered through the annual pattern of factor c. | |||
:<math>C = 0.85 \cdot \sin\left(\frac{2 \pi}{365}\right) (i + 0.75 ) + 0.85</math> | :<math>C = 0.85 \cdot \sin\left(\frac{2 \pi}{365}\right) (i + 0.75 ) + 0.85</math> | ||
:''Quelle? bei Zaiß finden sich nur so ähnliche Formeln (2.2 & 2.3)'' | :''Quelle? bei Zaiß finden sich nur so ähnliche Formeln (2.2 & 2.3)'' | ||
: | :with | ||
:<code>i</code> = | :<code>i</code> = ongoing day of the hydrological year | ||
<code>C</code> will alternate between <code>0,8 < C < 0,9</code>. This allows for different antecedent rain indices due to seasonal differences for same antecedent rain amounts and thereby leads to different conditions for run-off development. | |||
==== | ====Event dependent initial loss==== | ||
:<math>h_{va} = I_a \cdot e^{-\frac{V_N}{CVW}}</math> | :<math>h_{va} = I_a \cdot e^{-\frac{V_N}{CVW}}</math> | ||
:''Gl. 4.5b in {{:Literatur:Zaiß_1989}}'' | :''Gl. 4.5b in {{:Literatur:Zaiß_1989}}'' | ||
==== | ====run-off coefficient==== | ||
[[Bild:SCS PSI.png|thumb| | [[Bild:SCS PSI.png|thumb|Dependency of <code>ψ</code> on <code>h<sub>va</sub></code> and <code>h<sub>NE</sub></code> (with<code>A<sub>v</sub> = 0.05</code>)]] | ||
:<math>\psi = \begin{cases} | :<math>\psi = \begin{cases} | ||
0, & h_{va} \ge h_{NE} \\ | 0, & h_{va} \ge h_{NE} \\ | ||
Line 88: | Line 84: | ||
:''Gl. 4.4 in {{:Literatur:Zaiß_1989}}'' | :''Gl. 4.4 in {{:Literatur:Zaiß_1989}}'' | ||
: | :with | ||
: <code>A<sub>v</sub></code> = | : <code>A<sub>v</sub></code> = loss ratio = <code>0,05</code> | ||
: <code>h<sub>NE</sub></code> = | : <code>h<sub>NE</sub></code> = event-driven sum of rainfall [mm] | ||
== | ==Literature== | ||
<references/> | <references/> | ||
[[Kategorie:BlueM Theorie]] | [[Kategorie:BlueM Theorie]] |
Latest revision as of 07:14, 9 January 2015
BlueM.Sim | Download | Application | Theory | Development
BlueM.Sim theory
Event specific run-off coefficient on the basis of the Curve-Number-Method (CN-Method)of the Soil-Conservation-Service (SCS)
Theory
The Method applied in BlueM is a further development of the CN-Method (USDA (1964)[1]) by Zaiß (1989)[2]
By supplying a soil type and land use dependent CN (refer toDVWK (1991)[3]) an antecedent dependent initial loss as well as an antecedent dependent relationship of the run-off coefficient on the accumulated amount of rain up to a desired point in time can be determined. This results in an increasing run-off coefficient due to the accumulating rain amount in the course of a rainfall event.
A current run-off coefficient can be determined in dependency of the quantified previous history, as described above, by using the area specific and for average antecedent moisture conditions (AMC) (USDA (1964)[1]) valid CN.
In Abbildung 36 the development of the run-off coefficient depending on previous history is depicted for different CN.
As soil moisture increases during the course of a rainfall event the conditions for run-off development change which is why the run-off coefficient is additionally adjusted during a rainfall event as a function of accumulated rain. This correlation is depicted for different CN in Abbildung 37.
- Attention
- The CN-Method was developed for the simulation of solitary events on a daily basis. A further development is being undertaken for continuous simulation with smaller time steps.(refer to Bug 23 and Discussion)
Calculation
one-time calculated parameters
Input: CNII
Conversion of CNII
to CNI
:
- [math]\displaystyle{ CN_I = \frac{CN_{II}}{(2.3340 - 0.01334 \cdot CN_{II})} }[/math]
Maximum retention capability of the area (storage capacity) Smax
[mm]:
- [math]\displaystyle{ S_{max} = \frac{25400}{CN_I} - 254 }[/math]
area specific initial loss Ia
[mm]:
- [math]\displaystyle{ I_a = a \cdot S_{max} }[/math]
- with
a
= constant, originally set to0,2
[1], adjusted to European conditions in BlueM as0,05
[3]
Krümmungsparameter CVW
:
Laut Sartor[4], der die selbe Gleichung verwendet, stammt dieser Ansatz aus der Dokumentation von SMUSI 3.0
- [math]\displaystyle{ CVW = \frac{-100.}{\ln(\frac{0.5}{I_a})} }[/math]
- entspricht
b1
in Gl. 4.5b in Zaiß (1989)[5] - laut Zaiß:
Eine Abhängigkeit des "Krümmungsparameters" b1 von Gebietskenngrößen konnte im Rahmen dieser Arbeit nicht gefunden werden. Sie läßt sich nach den hier aufgeführten Zusammenhängen lediglich über Regressionsanalysen mehrerer N-A-Ereignisse für das jeweils betreffende Einzugsgebiet ermitteln.
continuously calculated parameters
previous history
Previous history is quantified through the 21-day-antecedent rain index VN
:
- [math]\displaystyle{ V_N = \sum_{j=0}^{21} C(j)^j \cdot h_{N,j} }[/math]
- Gl. 2.1 in Zaiß (1989)[6]
- with
hN,j
= rain height of the preceding day j (j = 0
is the current day)C(j)
= factor, which describes the influence of the preceding day j
Seasonal influence is considered through the annual pattern of factor c.
- [math]\displaystyle{ C = 0.85 \cdot \sin\left(\frac{2 \pi}{365}\right) (i + 0.75 ) + 0.85 }[/math]
- Quelle? bei Zaiß finden sich nur so ähnliche Formeln (2.2 & 2.3)
- with
i
= ongoing day of the hydrological year
C
will alternate between 0,8 < C < 0,9
. This allows for different antecedent rain indices due to seasonal differences for same antecedent rain amounts and thereby leads to different conditions for run-off development.
Event dependent initial loss
- [math]\displaystyle{ h_{va} = I_a \cdot e^{-\frac{V_N}{CVW}} }[/math]
- Gl. 4.5b in Zaiß (1989)[7]
run-off coefficient
- [math]\displaystyle{ \psi = \begin{cases} 0, & h_{va} \ge h_{NE} \\ 1 - \left(\frac{h_{va}}{A_v \cdot h_{NE} + (1 - A_v) \cdot h_{va}}\right)^2, & h_{va} \lt h_{NE} \end{cases} }[/math]
- Gl. 4.4 in Zaiß (1989)[8]
- with
Av
= loss ratio =0,05
hNE
= event-driven sum of rainfall [mm]
Literature
- ↑ 1.0 1.1 1.2 U.S. Department of Agriculture, Soil Conservation Service (1964): National Engineering Handbook, Section 4 Hydrology, Washington
(überarbeitete Fassung von 2004: NEH Part 630 Ch. 10) - ↑ Zaiß, H. (1989): Simulation ereignisspezifischer Einflüsse des Niederschlag-Abfluß-Prozesses von Hochwasserereignissen kleiner Einzugsgebiete mit N-A-Modellen. Technischer Bericht des Instituts für Ingenieurhydrologie und Hydraulik, TH Darmstadt, Nr. 42
- ↑ 3.0 3.1 DVWK (1991): Beitrag zur Bestimmung des effektiven Niederschlags für Bemessungshochwasser aus Gebietskenngrößen. Ergebnis einer vergleichenden Untersuchung durch den DVWK-Fachausschuß "Niederschlag-Abfluß-Modelle", Materialien, Heft 2
- ↑ Sartor, J. (1999): Einsatz der Langzeit-Seriensimulation für kleine Einzugsgebiete, In: Berichte des Fachgebietes Wasserbau und Wasserwirtschaft der Universität Kaiserslautern, Heft 9 (PDF)
- ↑ Zaiß, H. (1989): Simulation ereignisspezifischer Einflüsse des Niederschlag-Abfluß-Prozesses von Hochwasserereignissen kleiner Einzugsgebiete mit N-A-Modellen. Technischer Bericht des Instituts für Ingenieurhydrologie und Hydraulik, TH Darmstadt, Nr. 42
- ↑ Zaiß, H. (1989): Simulation ereignisspezifischer Einflüsse des Niederschlag-Abfluß-Prozesses von Hochwasserereignissen kleiner Einzugsgebiete mit N-A-Modellen. Technischer Bericht des Instituts für Ingenieurhydrologie und Hydraulik, TH Darmstadt, Nr. 42
- ↑ Zaiß, H. (1989): Simulation ereignisspezifischer Einflüsse des Niederschlag-Abfluß-Prozesses von Hochwasserereignissen kleiner Einzugsgebiete mit N-A-Modellen. Technischer Bericht des Instituts für Ingenieurhydrologie und Hydraulik, TH Darmstadt, Nr. 42
- ↑ Zaiß, H. (1989): Simulation ereignisspezifischer Einflüsse des Niederschlag-Abfluß-Prozesses von Hochwasserereignissen kleiner Einzugsgebiete mit N-A-Modellen. Technischer Bericht des Instituts für Ingenieurhydrologie und Hydraulik, TH Darmstadt, Nr. 42
Die Umrechnung von
CNII
inCNI
bedeutet, dass davon ausgegangen wird, dass das Gebiet zu Beginn der Simulation trocken ist?!