Modellierungstechnische Grundlagen: Difference between revisions

From BlueM
Jump to navigation Jump to search
(Seite neu erstellt)
 
m (remove hierarchy extension template)
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
Die Simulation der Speicherbewirtschaftung verlangt die mathematisch verwendbare Darstellung eines wasserwirtschaftlichen Systems. Dabei muss die Realität abstrahiert, in hydrologische bzw. hydraulische Prozesse unterteilt und in Algorithmen gefasst werden. Ergebnis der Abstraktion sind unterschiedliche Systemelemente. Die wesentlichsten Eigenschaften eines Systemelementes sind nachfolgend aufgelistet.
{{BlueM.Sim_nav}}
{{BlueMTheory_nav}}
 
Die Simulation eines wasserwirschaftlichen Modells verlangt die mathematisch verwendbare Darstellung des Systems. Dabei muss die Realität abstrahiert, in hydrologische bzw. hydraulische Prozesse unterteilt und in Algorithmen gefasst werden. Ergebnis der Abstraktion sind unterschiedliche Systemelemente. Die wesentlichsten Eigenschaften eines Systemelementes sind nachfolgend aufgelistet.


[[Bild:Theorie_Abb27.gif|thumb|left|Abbildung 27: Allgemeine Darstellung eines Systemelementes]]
[[Bild:Theorie_Abb27.gif|thumb|left|Abbildung 27: Allgemeine Darstellung eines Systemelementes]]
Line 15: Line 18:


Die Sammlung der Kenngrößen und Parameter lässt sich unter dem Begriff ''Systemdatenanalyse'' vereinen. Die Erhebung der Regel- und Steuerbeziehungen und ihre Umsetzung für die Simulation ist Inhalt der ''Betriebsanalyse''. Aus ihr erwächst eine Art zweite Systemlogik, die nicht Fließbeziehungen sondern die logischen Verknüpfungen der Zustandsgrößen zur Ableitung der Abgabenentscheidungen beinhaltet. Sie kann ''Steuerlogik'' genannt werden.
Die Sammlung der Kenngrößen und Parameter lässt sich unter dem Begriff ''Systemdatenanalyse'' vereinen. Die Erhebung der Regel- und Steuerbeziehungen und ihre Umsetzung für die Simulation ist Inhalt der ''Betriebsanalyse''. Aus ihr erwächst eine Art zweite Systemlogik, die nicht Fließbeziehungen sondern die logischen Verknüpfungen der Zustandsgrößen zur Ableitung der Abgabenentscheidungen beinhaltet. Sie kann ''Steuerlogik'' genannt werden.
[[Kategorie:BlueM Theorie]]

Latest revision as of 06:18, 9 January 2015

BlueM_icon.png BlueM.Sim | Download | Application | Theory | Development

Die Simulation eines wasserwirschaftlichen Modells verlangt die mathematisch verwendbare Darstellung des Systems. Dabei muss die Realität abstrahiert, in hydrologische bzw. hydraulische Prozesse unterteilt und in Algorithmen gefasst werden. Ergebnis der Abstraktion sind unterschiedliche Systemelemente. Die wesentlichsten Eigenschaften eines Systemelementes sind nachfolgend aufgelistet.

Abbildung 27: Allgemeine Darstellung eines Systemelementes
  1. Ein Systemelement integriert zusammengehörende Transport- und Speicherprozesse zu einer Berechnungseinheit.
  2. Ein Systemelement besitzt Eigenschaften in Form von Kenngrößen und Parameter. Kenngrößen sind eindeutig bestimmbare Merkmale von Systemelementen. Parameter sind ebenfalls Merkmale von Systemelementen, die aber einer Kalibrierung und Verifikation unterliegen.
  3. Systemelemente besitzen ihrem Typ nach entsprechende Methoden, die das Verhalten eines Elementes beschreiben. Belastungen, die auf das Element wirken, lösen, unter Benutzung der Methoden, Systemreaktionen und -zustände aus.
  4. Unter gleichen Belastungen sowie gleichen Kenngrößen und Parametern liefern die Methoden immer gleiche Systemreaktionen und -zustände.
Abbildung 28: Vergleich reale wasserwirtschaftliche Struktur mit einer Systemlogik

Werden nun die Systemelemente so angeordnet, dass sie die in der Wirklichkeit bestehenden Fließbeziehungen reproduzieren, ist die reale wasserwirtschaftliche Struktur für eine mathematische Simulation aufbereitet. Dieser Vorgang, auch Strukturanalyse genannt, legt die geographischen Verhältnisse und Interaktionen fest. Ergebnis einer Strukturanalyse ist die Systemlogik. Die Interaktion zwischen mehreren Elementen findet über die Belastung und den Elementausgang statt, wobei die Belastung in den meisten Fällen einem Zufluss und der Ausgang einem Abfluss entspricht. Der Ausgang eines Elementes entspricht der Belastung des nächsten, unterhalb liegenden Elementes. Nahezu beliebige wasserwirtschaftliche Systemstrukturen lassen sich durch unterschiedliche Anordnungen der Elemente nachbilden.

Je detaillierter die räumliche und zeitliche Diskretisierung betrieben wird, umso mehr Informationen lassen sich über das System selbst gewinnen. Eine möglichst hohe Auflösung eines Systems ist jedoch nicht immer uneingeschränkt von Vorteil, denn eine genauere Betrachtung verlangt mehr Kenngrößen und Parameter, die zum Teil kaum in ausreichender Qualität vorliegen und deshalb nur schwer abzuschätzen sind. So gibt es für jede Aufgabenstellung einen entsprechenden Abstraktionsgrad, der durch zunehmende Anforderungen und besser verfügbaren Eingangsdaten einem Wandel unterliegt.

Die Sammlung der Kenngrößen und Parameter lässt sich unter dem Begriff Systemdatenanalyse vereinen. Die Erhebung der Regel- und Steuerbeziehungen und ihre Umsetzung für die Simulation ist Inhalt der Betriebsanalyse. Aus ihr erwächst eine Art zweite Systemlogik, die nicht Fließbeziehungen sondern die logischen Verknüpfungen der Zustandsgrößen zur Ableitung der Abgabenentscheidungen beinhaltet. Sie kann Steuerlogik genannt werden.