Rural Catchments

From BlueM
Revision as of 05:20, 5 May 2009 by Froehlich (talk | contribs) (EN)
Jump to navigation Jump to search

{{#hierarchy-top:}}

Der natürlich ablaufende Prozess vom Niederschlag zum Abfluss wird in die drei Phasen Belastungsbildung, Abflussbildung (bzw. Belastungsaufteilung) und Abflusskonzentration untergliedert. Im Folgenden sind die zugrunde liegenden Berechnungsansätze aufgeführt.

Belastungsbildung

Die Belastungsbildung beschreibt die Ermittlung des Gebietsniederschlags für das betrachtete Einzugsgebiet. In BlueM werden Niederschläge über externe Zeitreihen eingelesen, so dass hier keine expliziten Berechnungen erforderlich sind.

Abflussbildung

Die Abflussbildung ermittelt aus dem gefallenen Niederschlag den Effektivniederschlag und daraus abgeleitet die Komponenten Oberflächenabfluss, Infiltration, Verdunstung und Interflow. Eine Schneeberechnung wird für Temperaturen unter Null °C anhand des Snow-Compaction-Verfahrens nach Knauf[1] durchgeführt.

In der Abflussbildungsphase wird die Aufteilung des Niederschlages (Systembelastung) in den direkt zum Abfluss gelangenden "wirksamen Niederschlag" und die abflussunwirksamen Verluste (Benetzungs-, Mulden-, Verdunstungs-und Versickerungsverlust) vorgenommen. Dementsprechend wird diese Phase auch mit Belastungsaufteilung bezeichnet. Die resultierende mathematische Gleichung für die momentane Belastungsaufteilung schreibt sich wie folgt:

[math]\displaystyle{ Nw(t) = N(t) - VP(t) - I(t) - \frac{dO}{dt} - \frac{dS}{dt} }[/math]
mit:
NW = abflusswirksamer Niederschlag
N = Niederschlag
VP = potentielle Verdunstung
I = Infiltration in den Bodenraum
O = Oberflächenwasservorrat
S = Schneevorrat

Nachfolgend werden die in der Gleichung verwendeten Terme und deren Berechnung im Einzelnen erläutert.

Niederschlag N(t)

Die Niederschlagsdaten müssen dem Simulationsmodell in Form von Regenreihen zur Verfügung gestellt werden. Hierbei ist es prinzipiell unerheblich, ob die Niederschlagsreihe ein Blockregen, ein Modellregen, ein gemessener natürlicher Regen, ein Regenspektrum oder eine langjährige Regenreihe ist. Je nach Zielsetzung der Simulationsrechnung ist die geeignete Belastung ausgewählt werden. Die Regenreihen stammen entweder aus der Zeitreihenverwaltung von BlueM oder werden wie bei Anwendung einer Kurzfristprognose durch die Eingabe einer Regendauer, einer Niederschlagshöhe und der Wahl eines Modellregens direkt vor einer Simulation erzeugt.

Verdunstung VP(t)

Es bestehen zwei Optionen für die Eingabe einer potentiellen Verdunstung:

a) Jahresverdunstungssumme

Abbildung 33: Jahresgang der potentiellen Verdunstung nach Brandt (1979)[2]

Es wird ein normierter Jahresgang der potentiellen Verdunstung nach Brandt[2] für die Berechnung der potentiellen Verdunstung herangezogen. Aus ausgewerteten Messungen von 20 Stationen, deren Mittelwerte als Histogramm in Abbildung 33 dargestellt sind, wurde folgende Ausgleichsfunktion (gepunktete Linie in Abbildung 33) ermittelt:

[math]\displaystyle{ VP[\mbox{mm/d}] = \begin{cases}(0.96 + 0.0033 \cdot i) \cdot \sin(\frac{2 \pi}{365})(i - 148) + 1.58, & i \lt = 300 \\ 2.56 - 1.53 / 65. \cdot (i - 300.), & i \gt 300 \end{cases} }[/math]
mit
i = laufender Tag des hydrologischen Jahres
i = 1 → 1. November

Die potentielle Verdunstung nach Brandt bezieht sich auf die Grasreferenzverdunstung[3] und geht von einer Jahresverdunstungshöhe von 654,282 mm aus. Wird eine abweichende Jahresverdunstungshöhe eingegeben, wird der nach Brandt ermittelte Wert entsprechend skaliert.

b) Verdunstungszeitreihe

Ist eine Verdunstungszeitreihe gegeben, wird der entsprechende Wert des Zeitschrittes eingelesen.
Vorsicht: Bei einem Simulationszeitschritt < 1d wird der Zeitreihenwert zusätzlich mit einem Tagesgang überprägt! (Bug 1)

Verdunstungstagesgang

Abbildung 34: Tagesgang der potentiellen Verdunstung als Vielfaches der mittleren Tagesverdunstung

Ist das gewählte Berechnungszeitintervall kleiner als ein Tag, wird mittels dem in Abbildung 34 dargestellten Tagesgang die potentielle Verdunstung für jedes Berechnungszeitintervall ermittelt. Ist das Berechnungsintervall ≥ 1 Tag entfällt die Berücksichtigung des Tagesganges.

Oberflächenwasservorrat (Versiegelter Flächenanteil) O

Bei den versiegelten Flächenanteilen kann neben dem Schneevorrat auch die Infiltration vernachlässigt werden, so dass sich die Bilanzgleichung wie folgt vereinfacht:

[math]\displaystyle{ Nw(t) = N(t) - VP(t) - \frac{dO}{dt} }[/math]

wobei die Oberflächenwasservorratsänderung dO/dt die Benetzung der Oberfläche sowie die Auffüllung und Entleerung (durch Verdunstung) der Mulden repräsentiert.

Als Benetzungsverlust BV für versiegelte Flächen wird folgender Standardwert angesetzt.

BV = 0.5 mm

Der Muldenverlust MV wird durch den Anwender vorgegeben.

Der Muldenverlust stellt den Mittelwert für eine geneigte Oberfläche dar. Da die Mulden jedoch nicht gleichmäßig verteilt sind und erfahrungsgemäß bereits ein Abfluss einsetzt, bevor überall die komplette Muldenauffüllung erreicht ist, wird unterstellt, dass jeweils

Abbildung 35: Schema der Modellansätze Benetzungs- und Muldenverluste
  • 1/3 der versiegelten Fläche einen verminderten Muldenverlust von 1/3 MV
  • 1/3 der versiegelten Fläche den mittleren Muldenverlust von 3/3 MV
  • 1/3 der versiegelten Fläche einen erhöhten Muldenverlust von 5/3 MV

aufweist. Somit kommt es bereits zum Abfluss, wenn der um die Verdunstungsrate verminderte Niederschlag den Benetzungsverlust und 1/3 des Muldenverlustes übersteigt (bei trockener Vorgeschichte). In Abbildung 35 sind die o.g. Annahmen schematisch skizziert.

Der Abflussbeiwert der versiegelten Flächen (nach Abdeckung der Anfangsverluste) wird mit ψ = 1 angesetzt. Bei der Festlegung des versiegelten Flächenanteils in einem Teileinzugsgebiet ist zu beachten, dass nicht alle befestigten oder versiegelten Flächen tatsächlich in eine Kanalisation entwässern.

Die kontinuierliche Bereitstellung der Benetzungs- und Muldenverluste erfolgt über die laufende Bilanzierung dieser Speicher und der Verdunstung.

Oberflächenwasservorrat (unversiegelter Flächenanteil) O

Der Oberflächenwasservorrat wird über die Bilanzierung eines Verlustspeichers in Abhängigkeit des gewählten Abflussbildungsansatzes berechnet. Einzelheiten dazu finden sich in den folgenden Abschnitten zur Berechnung der Infiltration bzw. abflusswirksamer Niederschlag.

Infiltration bzw. abflusswirksamer Niederschlag I(t), Nw(t)

Bei den durchlässigen Flächen kann die Infiltration in den Boden nicht vernachlässigt werden, da diese das Abflussgeschehen entscheidend prägt. Für die Berechnung wurden drei Ansätze im Modell implementiert:

  1. Konstanter Abflussbeiwert ψ
  2. Ereignisspezifischer Abflussbeiwert in Anlehnung an das Verfahren des Soil-Conservation-Service (SCS)
  3. Bodenfeuchtesimulation

Konstanter Abflussbeiwert ψ

Bei Angabe eines ψu-Wertes kommt nach Abdeckung der Anfangsverluste (Benetzungs- und Muldenverlust) der übrige Anteil des Niederschlages im Verhältnis des Abflussbeiwertes ψu zum Abfluss und zwar unabhängig von der Vorgeschichte und den Merkmalen des Niederschlages (Höhe, Intensität, Dauer). Auf diesen Ansatz sollte nach Möglichkeit verzichtet werden, da hier der Prozess der Abflussbildung nur grob vereinfachend beschrieben wird.

SCS-Verfahren

siehe SCS-Verfahren

Bodenfeuchtesimulation

siehe Bodenfeuchtesimulation

Abflusskonzentration

Abbildung 44: Berechnung der Abflusskonzentration von natürlichen Einzugsgebieten

Die Abflusskonzentration bestimmt die Verzögerung des Abflusses aus dem Einzugsgebiet. Die Berechnung von Interflow und Basisabfluss ist abhängig vom Berechnungsansatz. Bei der Berechungsoption Bodenfeuchteberechnung werden die beiden Abflusskomponenten über einen linearen Einzelspeicher verzögert an den Elementausgang abgegeben. Bei den Berechungsoptionen Abflussbeiwert und SCS-Verfahren wird kein Interflow berücksichtigt und der Basisabfluss entsprechend der angegebenen Basisabflussspende unter möglicher Berücksichtigung eines Jahresgangs ermittelt.

Es wird eine Parallelspeicherkaskade mit jeweils zwei Speichern für unbefestigte und eine Kaskade mit ebenfalls zwei Speichern für befestigte Flächen benutzt. Die Speicherkaskaden können entweder als Linearspeicher oder als nichtlineare Speicher berechnet werden. Werden die Parameter für die Speicherkaskade nicht vorgegeben, erfolgt die Berchenung an Hand der Gebietskenngrößen gemäß Zaiß (1986)[4].

Literaturangaben

  1. Knauf, D. (1980): Die Berechnung des Abflusses aus einer Schneedecke, in: DVWK-Schriften, Heft 46, Analyse und Berechnung oberirdischer Abflüsse PDF information.png
  2. 2.0 2.1 Brandt, T. (1979): Modell zur Abflussgangliniensimulation unter Berücksichtigung des grundwasserbürtigen Abflusses, Technischer Bericht Nr. 24 aus dem Institut für Wasserbau, Fachgebiet Ingenieurhydrologie und Hydraulik der TH Darmstadt
  3. DVWK (Hrsg.) (1996): Ermittlung der Verdunstung von Land- und Wasserflächen, DVWK-Merkblätter zur Wasserwirtschaft, Heft 238. Bonn: Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH
  4. Zaiß, H. (1986): Abflussermittlung aus Teilflächen, in "Hydrologische Abflussmodelle in der praktischen Anwendung", 36. Fortbildungslehrgang des BWK-Hessen am 21. März 1986, Friedberg [ihwb-Bibliothek: Inv.-Nr. 5593, 10 BWK 36] PDF information.png OCR information.png

{{#hierarchy-bottom:}}