Urban Catchments: Difference between revisions
m (→Infiltration) |
|||
Line 9: | Line 9: | ||
==Abflussbildung== | ==Abflussbildung== | ||
Die Abflussbildung ermittelt aus dem gefallenen Niederschlag den Anteil, der für den Oberflächenabfluss zur Verfügung steht. Der Niederschlag wird in den direkt zum Abfluss gelangenden "effktiven bzw. wirksamen Niederschlag" und die abflussunwirksamen Anteile | Die Abflussbildung ermittelt aus dem gefallenen Niederschlag den Anteil, der für den Oberflächenabfluss zur Verfügung steht. Der Niederschlag wird in den direkt zum Abfluss gelangenden "effktiven bzw. wirksamen Niederschlag" und die abflussunwirksamen Anteile aufgeteilt. Hierbei handelt es sich um das Wasser, das in Mulden liegen bleibt (Muldenverlust) oder die versiegelten Flächen benetzt (Benetzungsverlust) und letztlich verdunstet oder in den Boden infiltriert. Dementsprechend wird diese Phase auch mit Belastungsaufteilung bezeichnet. Schneefall wird bei urbanen Gebieten nicht berücksichtigt. | ||
Grundsätzlich werden bei der Berechnung die unbefestigten und die befestigten Flächenanteile getrennt betrachtet. Der Anteil der befestigten Flächen an der Gesamtfläche ergibt aus dem Versiegelungsgrad: | Grundsätzlich werden bei der Berechnung die unbefestigten und die befestigten Flächenanteile getrennt betrachtet. Der Anteil der befestigten Flächen an der Gesamtfläche ergibt aus dem Versiegelungsgrad: |
Revision as of 05:39, 5 November 2008
{{#hierarchy-top:}}
Der natürlich ablaufende Prozess vom Niederschlag zum Abfluss wird analog zu den natürlichen Einzugsgebieten in die drei Phasen Belastungsbildung, Abflussbildung (bzw. Belastungsaufteilung) und Abflusskonzentration untergliedert. Im Folgenden sind die zugrunde liegenden Berechnungsansätze aufgeführt.
Belastungsbildung
Die Belastungsbildung beschreibt die Ermittlung des Gebietsniederschlags für das betrachtete Einzugsgebiet. In BlueM werden Niederschläge über externe Zeitreihen eingelesen, so dass hier keine expliziten Berechnungen erforderlich sind.
Abflussbildung
Die Abflussbildung ermittelt aus dem gefallenen Niederschlag den Anteil, der für den Oberflächenabfluss zur Verfügung steht. Der Niederschlag wird in den direkt zum Abfluss gelangenden "effktiven bzw. wirksamen Niederschlag" und die abflussunwirksamen Anteile aufgeteilt. Hierbei handelt es sich um das Wasser, das in Mulden liegen bleibt (Muldenverlust) oder die versiegelten Flächen benetzt (Benetzungsverlust) und letztlich verdunstet oder in den Boden infiltriert. Dementsprechend wird diese Phase auch mit Belastungsaufteilung bezeichnet. Schneefall wird bei urbanen Gebieten nicht berücksichtigt.
Grundsätzlich werden bei der Berechnung die unbefestigten und die befestigten Flächenanteile getrennt betrachtet. Der Anteil der befestigten Flächen an der Gesamtfläche ergibt aus dem Versiegelungsgrad:
- [math]\displaystyle{ A_{bef} = VG \cdot A_{ges} }[/math]
Befestigte Flächenanteile
Bei den befestigten Flächenanteilen berechnet sich der effektive Niederschlag aus den dem Gesamtniederschlag abzüglich der Anfangsverluste, die sich aus Benetzungs- und Muldenverlusten sowie der Verdunstung zusammensetzen. Hieraus resultiert die folgende Gleichung:
- [math]\displaystyle{ Nw(t) = N(t) - VP(t) - \frac{dO}{dt} }[/math]
- mit:
- NW = abflusswirksamer Niederschlag
- N = Niederschlag
- VP = potentielle Verdunstung
- O = Oberflächenwasservorrat
Der Abflussbeiwert der befestigten Flächen wird grundsätzlich mit ψ = 1 angesetzt, d.h. es wird davon ausgegangen, dass die resultierende Wassermenge nach Abdeckung der Anfangsverluste für den Oberflächenabfluss zur Verfügung steht. Bei der Festlegung des befestigten Flächenanteils in einem Teileinzugsgebiet ist allerdings zu beachten, dass nicht alle befestigten Flächen tatsächlich in eine Kanalisation entwässern. Erfahrungsgemäß liegt der nicht zum Kanal entwässernde Anteil zwischen 10% und 20%.
Unbefestigte Flächenanteile
Bei den unbefestigten Flächenanteilen setzen sich die Anfangsverluste aus den Muldenverlusten und der Verdunstung zusammen. Für die Berechnung des zum Abfluss kommenden effektiven Niederschlags werden zusätzlich die Infiltration (entweder über einen vom Benutzer einzugebenden konstanten Abflussbeiwert ψ oder einen variablem Abflussbeiwert, der über das SCS-Verfahren berechnet wird). Für die momentane Belastungsaufteilung ergibt sich somit die folgende Gleichung:
- [math]\displaystyle{ Nw(t) = N(t) - VP(t) - I(t) - \frac{dO}{dt} }[/math]
- mit:
- NW = abflusswirksamer Niederschlag
- N = Niederschlag
- VP = potentielle Verdunstung
- I = Infiltration in den Bodenraum
- O = Oberflächenwasservorrat
Im Folgenden werden die einzelnen Verlustanteile beschrieben:
Verdunstung
Es bestehen zwei Optionen für die Eingabe einer potentiellen Verdunstung. Beide Optionen berechnen einen Verdunstungstageswert. Wird mit einem Berechnungsintervall gerechnet, das kleiner als ein Tag ist, wird mittels dem in Abbildung 34 dargestellten Tagesgang die potentielle Verdunstung für jedes Berechnungszeitintervall ermittelt. Ist das Berechnungsintervall ≥ 1 Tag entfällt die Berücksichtigung des Tagesganges.
Option 1: Jahresverdunstungssumme
Es wird ein normierter Jahresgang der potentiellen Verdunstung nach Brandt[1] für die Berechnung der potentiellen Verdunstung herangezogen. Aus ausgewerteten Messungen von 20 Stationen, deren Mittelwerte als Histogramm in Abbildung 33 dargestellt sind, wurde folgende Ausgleichsfunktion (gepunktete Linie in Abbildung 33) ermittelt:
- [math]\displaystyle{ VP[\mbox{mm/d}] = \begin{cases}(0.96 + 0.0033 \cdot i) \cdot \sin(\frac{2 \pi}{365})(i - 148) + 1.58, & i \lt = 300 \\ 2.56 - 1.53 / 65. \cdot (i - 300.), & i \gt 300 \end{cases} }[/math]
- mit
- i = laufender Tag des hydrologischen Jahres
- i = 1 → 1. November
Die potentielle Verdunstung nach Brandt bezieht sich auf die Grasreferenzverdunstung[2] und geht von einer Jahresverdunstungshöhe von 654,282 mm aus. Wird eine abweichende Jahresverdunstungshöhe eingegeben, wird der nach Brandt ermittelte Wert entsprechend skaliert.
Option 2: Verdunstungszeitreihe
Ist eine Verdunstungszeitreihe gegeben, wird der entsprechende Wert des Zeitschrittes eingelesen.
Vorsicht: Bei einem Simulationszeitschritt < 1d wird der Zeitreihenwert zusätzlich mit einem Tagesgang überprägt! (Bug 1)
Oberflächenwasservorrat
Befestigte Flächenanteile
Die Oberflächenwasservorratsänderung dO/dt
repräsentiert die Benetzung der Oberfläche sowie die Auffüllung und Entleerung (durch Verdunstung) der Mulden.
Als Benetzungsverlust BV für versiegelte Flächen wird folgender Standardwert angesetzt.
BV = 0.5 mm
Der Muldenverlust MV wird durch den Anwender vorgegeben.
Der Muldenverlust stellt den Mittelwert für eine geneigte Oberfläche dar. Da die Mulden jedoch nicht gleichmäßig verteilt sind und erfahrungsgemäß bereits ein Abfluss einsetzt, bevor überall die komplette Muldenauffüllung erreicht ist, wird unterstellt, dass jeweils
- 1/3 der versiegelten Fläche einen verminderten Muldenverlust von 1/3 MV
- 1/3 der versiegelten Fläche den mittleren Muldenverlust von 3/3 MV
- 1/3 der versiegelten Fläche einen erhöhten Muldenverlust von 5/3 MV
aufweist. Somit kommt es bereits zum Abfluss, wenn der um die Verdunstungsrate verminderte Niederschlag den Benetzungsverlust und 1/3 des Muldenverlustes übersteigt (bei trockener Vorgeschichte). In Abbildung 35 sind die o.g. Annahmen schematisch skizziert.
Die kontinuierliche Bereitstellung der Benetzungs- und Muldenverluste erfolgt über die laufende Bilanzierung dieser Speicher und der Verdunstung.
Unbefestigte Flächenanteile
Der Oberflächenwasservorrat wird über die Bilanzierung eines Verlustspeichers in Abhängigkeit des gewählten Abflussbildungsansatzes berechnet. Einzelheiten dazu finden sich in den folgenden Abschnitten zur Berechnung der Infiltration.
Infiltration
Bei den unbefestigten Flächenanteilen kann die Infiltration in den Boden nicht vernachlässigt werden, da diese das Abflussgeschehen entscheidend prägt. Für die Berechnung wurden zwei Ansätze im Modell implementiert:
- Konstanter Abflussbeiwert ψ
- Ereignisspezifischer Abflussbeiwert in Anlehnung an das Verfahren des Soil-Conservation-Service (SCS)
Konstanter Abflussbeiwert ψ
Bei Angabe eines ψu-Wertes kommt nach Abdeckung der Anfangsverluste (Muldenverlust sowie Verdusntung) der übrige Anteil des Niederschlages im Verhältnis des Abflussbeiwertes ψu zum Abfluss und zwar unabhängig von der Vorgeschichte und den Merkmalen des Niederschlages (Höhe, Intensität, Dauer).
Ereignisspezifischer Abflussbeiwert in Anlehnung an das Verfahren des Soil-Conservation-Service (SCS)
Bei Angabe eines vom Bodentyp und der Bodennutzung abhängigen CN-Wertes (siehe DVWK (1991)[3]) lässt sich ein vorgeschichtsabhängiger Anfangsverlust sowie eine vorgeschichtsabhängige Beziehung des Abflussbeiwertes von der bis zum betrachteten Zeitpunkt akkumulierten Niederschlagshöhe formulieren (cp. Zaiß (1989)[4]); d.h. der Abflussbeiwert wächst mit zunehmendem Niederschlag im Verlauf des Ereignisses an.
Die Quantifizierung der Vorgeschichte erfolgt über den 21-Tage-Vorregenindex VN
- [math]\displaystyle{ V_N = \sum_{j=1}^{21} C(j)^j \cdot h_{N,j} }[/math]
- mit
hN,j
= Niederschlagshöhe des j-ten VortagsC(j)
= Faktor, der den Einfluss des j-ten Vortags beschreibt
Der Einfluss der Jahreszeit wird durch einen Jahresgang des Faktors C wiedergegeben.
- [math]\displaystyle{ C = 0.05 \cdot \sin\left(\frac{2 \pi}{365}\right) (i + 0.75 ) + 0.85 }[/math]
- mit
i
= lfd. Tag des Abflussjahres
Damit schwankt der Wert C
zwischen 0,8 < C < 0,9
. Hierdurch wird erreicht, dass bei gleichem Vorregen zu unterschiedlichen Jahreszeiten unterschiedliche Vorregenindizes berechnet und damit eine veränderte Abflussbereitschaft in Rechnung gestellt wird.
In Abhängigkeit von der auf diese Weise quantifizierten Vorgeschichte kann unter Verwendung der gebietsspezifischen und für mittlere Vorfeuchteverhältnisse gültigen CN-Werte ein aktueller Abflussbeiwert berechnet werden. In Abbildung 36 ist für unterschiedliche CN-Werte dargestellt, wie sich der aktuelle Abflussbeiwert in Abhängigkeit von der Vorgeschichte verändert.
Da sich im Verlaufe eines Regenereignisses durch die Durchfeuchtung des Bodens die Abflussbereitschaft eines Einzugsgebiets verändert, wird ebenfalls eine Anpassung des Abflussbeiwertes während eines Ereignisses als Funktion der kumulierten Niederschlagshöhe vorgenommen. In Abbildung 37 ist dieser Zusammenhang für unterschiedliche CN-Werte dargestellt.
Abflusskonzentration
Die Abflusskonzentration bestimmt die Verzögerung des Oberflächenabflusses aus dem Einzugsgebiet. Interflow und Basisabfluss werden bei urbanen Einzugsgebieten nicht berücksichtigt, da die kanalisierten Flächen als Teil des Entwässerungssystems ausschließlcih Oberflächenwasser in der Kanalisation weiterleiten.
Die Berechnung des Oberflächenabflusses erfolgt mit Hilfe einer Parallelspeicherkaskade mit jeweils drei Speichern. Der abflusswirksame Niederschlag des Gesamtgebiets wird durch Mittelwertbildung über die befestigten und unbefestigten Flächen berechnet. Die Aufteilung auf die beiden Speicherkaskaden erfolgt an Hand der Größe des Einzugsgebiets, die Retentionskonstanten der Speicher an Hand der Fließzeit im Einzugsgebiet (siehe Ostrowski et al. (1998)[5]).
Literaturangaben
- ↑ 1.0 1.1 Brandt, T. (1979): Modell zur Abflussgangliniensimulation unter Berücksichtigung des grundwasserbürtigen Abflusses, Technischer Bericht Nr. 24 aus dem Institut für Wasserbau, Fachgebiet Ingenieurhydrologie und Hydraulik der TH Darmstadt
- ↑ DVWK (Hrsg.) (1996): Ermittlung der Verdunstung von Land- und Wasserflächen, DVWK-Merkblätter zur Wasserwirtschaft, Heft 238. Bonn: Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH
- ↑ DVWK (1991): Beitrag zur Bestimmung des effektiven Niederschlags für Bemessungshochwasser aus Gebietskenngrößen. Ergebnis einer vergleichenden Untersuchung durch den DVWK-Fachausschuß "Niederschlag-Abfluß-Modelle", Materialien, Heft 2
- ↑ Zaiß, H. (1989): Simulation ereignisspezifischer Einflüsse des Niederschlag-Abfluß-Prozesses von Hochwasserereignissen kleiner Einzugsgebiete mit N-A-Modellen. Technischer Bericht des Instituts für Ingenieurhydrologie und Hydraulik, TH Darmstadt, Nr. 42
- ↑ Ostrowski, M.W., Mehler, R., Leichtfuß, A. (1998): Dokumentation des Schmutzfrachtmodells SMUSI Version 4.0. Darmstadt: Institut für Wasserbau und Wasserwirtschaft, Technische Universität Darmstadt
{{#hierarchy-bottom:}}