DDS
Jump to navigation
Jump to search
BlueM.Opt | Download | Usage | Development
Beschreibung
Dynamically Dimensioned Search (DDS) is an n-dimensional continuous global optimization algorithm by Tolson & Shoemaker (2007)[1].
DDS is designed for calibration problems with many parameters, requires no algorithm parameter tuning, and automatically scales the search to find good solutions within the maximum number of user-specified function (or model) evaluations. As a result, DDS is ideally suited for computationally expensive optimization problems such as distributed watershed model calibration.[1]
Erforderliche Eingabedateien
- OPT-Datei
- MOD-Datei
- ZIE-Datei
- CON-Datei (werden Constraints bei DDS überhaupt berücksichtigt? -- Froehlich 10:45, 17. Dez. 2008 (UTC))