Test problems: Difference between revisions
(added animations) |
|||
Line 7: | Line 7: | ||
==Beale-Problem== | ==Beale-Problem== | ||
Es wird das Minimum des Beale-Problems gesucht (x=(3, 0.5 | [[File:Beale Sensiplot.png|thumb|right|Beale-Problem evaluated with [[SensiPlot]]]] | ||
[[File:Beale_ani.gif|thumb|left|Beale-Problem]]<br clear="all" /> | Es wird das Minimum des Beale-Problems{{:Literature:Beale 1958|}} gesucht. | ||
* Parameters: 2 | |||
* Objective functions: 1 | |||
<math>f(x,y)=(1.5-x(1-y))^2+(2.25-x(1-y^2))^2+(2.625-x(1-y^3))^2</math> | |||
Global Minimum: <code>f(3, 0.5) = 0</code> | |||
[[File:Beale_ani.gif|thumb|left|Beale-Problem being solved with [[PES]]]]<br clear="all" /> | |||
==Schwefel 2.4-Problem== | ==Schwefel 2.4-Problem== |
Revision as of 03:34, 11 September 2009
BlueM.Opt | Download | Usage | Development
Liste der Testprobleme, die in BlueM.Opt eingebaut sind.
Sinus-Funktion
Parameter an Sinusfunktion anpassen
Beale-Problem
Es wird das Minimum des Beale-Problems[1] gesucht.
- Parameters: 2
- Objective functions: 1
[math]\displaystyle{ f(x,y)=(1.5-x(1-y))^2+(2.25-x(1-y^2))^2+(2.625-x(1-y^3))^2 }[/math]
Global Minimum: f(3, 0.5) = 0
Schwefel 2.4-Problem
Minimum der Problemstellung wird gesucht (xi=1, F(x)=0)
Deb 1
Multikriterielles Testproblem (konvex)
Zitzler/Deb T1
Multikriterielles Testproblem (konvex)
Zitzler/Deb T2
Multikriterielles Testproblem (konkav)
Zitzler/Deb T3
Multikriterielles Testproblem (konvex, nicht stetig)
Zitzler/Deb T4
Multikriterielles Testproblem (konvex)
CONSTR
Multikriterielles Testproblem (konvex) mit zwei Randbedingungen
Box
Multikriterielles Testproblem (Kreis) mit zwei Randbedingungen
Abhängige Parameter
Bedingung im Parameterraum: Y > X
Flood Mitigation
Multicriteria Problem Flood Mitigation and Hydropower Generation.
Sharma, Ajay (2008): Inflow prediction and optimal operation of reservoir system during flood by the combined application of ANN and different Optimization techniques. Master's Thesis. Link
- ↑ Beale, E. M. L. (1958): On an iterative method of finding a local minimum of a function of more than one variable. Technical Report 25, Statistical Techniques Research Group, Princeton University.