Test problems: Difference between revisions

From BlueM
Jump to navigation Jump to search
(Added Ackley function (BlueM.Opt v2.4.0))
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{BlueM.Opt nav}}
{{BlueM.Opt nav}}
<div style="float:left; margin:0 10px 10px 0;">__TOC__</div>
<div style="float:left; margin:0 10px 10px 0;">__TOC__</div>
Liste der Testprobleme, die in [[BlueM.Opt]] eingebaut sind. Die meisten stammen aus {{:Literature:Moré et al. 1981}}.<br clear="all"/>
List of test problems available in [[BlueM.Opt]]. Some of them are taken from {{:Literature:Moré et al. 1981}}.<br clear="all"/>


==Test problems==
==Test problems==
===Sinus-Funktion===
Parameter an Sinusfunktion anpassen


===Beale-Problem===
===Ackley function===
[[File:Beale Sensiplot.png|thumb|Beale function (created with [[SensiPlot]])]]
[[File:BlueM.Opt Ackley function.png|thumb|right|Ackley function]]
[[File:Beale_ani.gif|thumb|left|Beale-Problem being solved with [[PES]]]]
The Ackley function is a non-convex function used as a performance test problem for optimization algorithms. It was proposed by David Ackley in his 1987 PhD dissertation{{:Literature:Ackley 1987|}}.
Es wird das Minimum des Beale-Problems{{:Literature:Beale 1958|}} gesucht.
 
On a 2-dimensional domain it is defined by:
 
: <math>
\begin{align}
f(x,y) = -20&{}\exp\left[-0.2\sqrt{0.5(x^2+y^2)}\,\right] \\
& {} -\exp\left[0.5\left(\cos 2\pi x + \cos 2\pi y \right)\right] + e + 20
\end{align}
</math>{{:Literature:Bäck 1996|}}
 
Its global optimum point is
:<math>f(0,0) = 0.</math><br clear="all" />
 
===Beale problem===
[[File:Beale Sensiplot.png|thumb|right|Beale function (created with [[SensiPlot]])]]
[[File:Beale_ani.gif|thumb|right|Beale problem being solved with [[PES]] (animation)]]
Finding the minimum of the Beale function{{:Literature:Beale 1958|}}.
* Parameters: 2
* Parameters: 2
* Objective functions: 1
* Objective functions: 1
Line 16: Line 30:
<math>f(x,y)=(1.5-x(1-y))^2+(2.25-x(1-y^2))^2+(2.625-x(1-y^3))^2</math>
<math>f(x,y)=(1.5-x(1-y))^2+(2.25-x(1-y^2))^2+(2.625-x(1-y^3))^2</math>


Global Minimum: <code>f(3, 0.5) = 0</code><br clear="all" />
Global minimum: <code>f(3, 0.5) = 0</code><br clear="all" />


===Schwefel 2.4-Problem===
===Box===
Minimum der Problemstellung wird gesucht (xi=1, F(x)=0)
[[File:EVO Box screenshot.png|thumb|Box]]
Multicriteria test problem (circle) with two contraints<br clear="all"/>
 
===CONSTR===
[[File:CONSTR_ani.gif|thumb|CONSTR]]
Multicriteria test problem (convex) with two constraints<br clear="all" />


===Deb 1===
===Deb 1===
Multikriterielles Testproblem (konvex)
Multicriteria test problem (convex)
 
===Dependent parameters===
Parameter dependency: Y > X
 
===Flood Mitigation===
[[File:TP FloodMitigation.png|thumb|Flood Mitigation]]
Multicriteria Problem Flood Mitigation and Hydropower Generation<ref>'''Sharma, Ajay''' (2008): Inflow prediction and optimal operation of reservoir system during flood by the combined application of ANN and different Optimization techniques. Master Thesis, Institute of Hydraulic and Water Resources Engineering, Technische Universität Darmstadt.</ref><br clear="all"/>
 
===Schwefel 2.4 problem===
Find the minimum (xi=1, F(x)=0)
 
===Sine function===
Fit parameters to the sine function


===Zitzler/Deb T1===
===Zitzler/Deb T1===
Multikriterielles Testproblem (konvex)
Multicriteria test problem (convex)


===Zitzler/Deb T2===
===Zitzler/Deb T2===
Multikriterielles Testproblem (konkav)
Multicriteria test problem (concave)


===Zitzler/Deb T3===
===Zitzler/Deb T3===
[[File:TP ZitzlerDebT3.png|thumb|Zitzler/Deb T3]]
[[File:Zitzler deb t3 ani.gif|thumb|right|Zitzler/Deb T3 being solved with [[PES]] (animation)]]
Multikriterielles Testproblem (konvex, nicht stetig)
Multicriteria test problem (convex, non-continuous)<br clear="all" />
[[File:Zitzler deb t3 ani.gif|thumb|left|Zitzler/Deb T3]]<br clear="all" />


===Zitzler/Deb T4===
===Zitzler/Deb T4===
Multikriterielles Testproblem (konvex)
Multicriteria test problem (convex)
 
===CONSTR===
[[File:CONSTR_ani.gif|thumb|CONSTR]]
Multikriterielles Testproblem (konvex) mit zwei Randbedingungen<br clear="all" />
 
===Box===
[[File:EVO Box screenshot.png|thumb|Box]]
Multikriterielles Testproblem (Kreis) mit zwei Randbedingungen<br clear="all"/>
 
===Abhängige Parameter===
Bedingung im Parameterraum: Y > X
 
===Flood Mitigation===
[[File:TP FloodMitigation.png|thumb|Flood Mitigation]]
Multicriteria Problem Flood Mitigation and Hydropower Generation<ref>'''Sharma, Ajay''' (2008): Inflow prediction and optimal operation of reservoir system during flood by the combined application of ANN and different Optimization techniques. Master's Thesis.</ref><br clear="all"/>


==References==
==References==

Latest revision as of 01:18, 19 May 2023

EVO.png BlueM.Opt | Download | Usage | Development

List of test problems available in BlueM.Opt. Some of them are taken from Moré et al. (1981)[1].

Test problems

Ackley function

Ackley function

The Ackley function is a non-convex function used as a performance test problem for optimization algorithms. It was proposed by David Ackley in his 1987 PhD dissertation[2].

On a 2-dimensional domain it is defined by:

[math]\displaystyle{ \begin{align} f(x,y) = -20&{}\exp\left[-0.2\sqrt{0.5(x^2+y^2)}\,\right] \\ & {} -\exp\left[0.5\left(\cos 2\pi x + \cos 2\pi y \right)\right] + e + 20 \end{align} }[/math][3]

Its global optimum point is

[math]\displaystyle{ f(0,0) = 0. }[/math]

Beale problem

Beale function (created with SensiPlot)
Beale problem being solved with PES (animation)

Finding the minimum of the Beale function[4].

  • Parameters: 2
  • Objective functions: 1

[math]\displaystyle{ f(x,y)=(1.5-x(1-y))^2+(2.25-x(1-y^2))^2+(2.625-x(1-y^3))^2 }[/math]

Global minimum: f(3, 0.5) = 0

Box

Box

Multicriteria test problem (circle) with two contraints

CONSTR

CONSTR

Multicriteria test problem (convex) with two constraints

Deb 1

Multicriteria test problem (convex)

Dependent parameters

Parameter dependency: Y > X

Flood Mitigation

Flood Mitigation

Multicriteria Problem Flood Mitigation and Hydropower Generation[5]

Schwefel 2.4 problem

Find the minimum (xi=1, F(x)=0)

Sine function

Fit parameters to the sine function

Zitzler/Deb T1

Multicriteria test problem (convex)

Zitzler/Deb T2

Multicriteria test problem (concave)

Zitzler/Deb T3

Zitzler/Deb T3 being solved with PES (animation)

Multicriteria test problem (convex, non-continuous)

Zitzler/Deb T4

Multicriteria test problem (convex)

References

  1. Moré, J.J., Garbow, B.S. and Hillstrom, K.E. (1981): Testing Unconstrained Optimization Software, ACM Transactions on Mathematical Software (TOMS) 7:1, p. 17-41, doi:10.1145/355934.355936
  2. Ackley, D. H. (1987): "A connectionist machine for genetic hillclimbing", Kluwer Academic Publishers, Boston MA.
  3. Bäck, Thomas (1996): "Artificial Landscapes". Evolutionary Algorithms in Theory and Practice. Oxford University Press. p. 142. doi:10.1093/oso/9780195099713.003.0008. ISBN 978-0-19-509971-3.
  4. Beale, E. M. L. (1958): On an iterative method of finding a local minimum of a function of more than one variable. Technical Report 25, Statistical Techniques Research Group, Princeton University.
  5. Sharma, Ajay (2008): Inflow prediction and optimal operation of reservoir system during flood by the combined application of ANN and different Optimization techniques. Master Thesis, Institute of Hydraulic and Water Resources Engineering, Technische Universität Darmstadt.