Test problems: Difference between revisions

From BlueM
Jump to navigation Jump to search
(added animations)
Line 7: Line 7:


==Beale-Problem==
==Beale-Problem==
Es wird das Minimum des Beale-Problems gesucht (x=(3, 0.5), F(x)=0)
[[File:Beale Sensiplot.png|thumb|right|Beale-Problem evaluated with [[SensiPlot]]]]
[[File:Beale_ani.gif|thumb|left|Beale-Problem]]<br clear="all" />
Es wird das Minimum des Beale-Problems{{:Literature:Beale 1958|}} gesucht.
* Parameters: 2
* Objective functions: 1
 
<math>f(x,y)=(1.5-x(1-y))^2+(2.25-x(1-y^2))^2+(2.625-x(1-y^3))^2</math>
 
Global Minimum: <code>f(3, 0.5) = 0</code>
[[File:Beale_ani.gif|thumb|left|Beale-Problem being solved with [[PES]]]]<br clear="all" />


==Schwefel 2.4-Problem==
==Schwefel 2.4-Problem==

Revision as of 03:34, 11 September 2009

EVO.png BlueM.Opt | Download | Usage | Development

Liste der Testprobleme, die in BlueM.Opt eingebaut sind.

Sinus-Funktion

Parameter an Sinusfunktion anpassen

Beale-Problem

Beale-Problem evaluated with SensiPlot

Es wird das Minimum des Beale-Problems[1] gesucht.

  • Parameters: 2
  • Objective functions: 1

[math]\displaystyle{ f(x,y)=(1.5-x(1-y))^2+(2.25-x(1-y^2))^2+(2.625-x(1-y^3))^2 }[/math]

Global Minimum: f(3, 0.5) = 0

Beale-Problem being solved with PES


Schwefel 2.4-Problem

Minimum der Problemstellung wird gesucht (xi=1, F(x)=0)

Deb 1

Multikriterielles Testproblem (konvex)

Zitzler/Deb T1

Multikriterielles Testproblem (konvex)

Zitzler/Deb T2

Multikriterielles Testproblem (konkav)

Zitzler/Deb T3

Zitzler/Deb T3

Multikriterielles Testproblem (konvex, nicht stetig)

Zitzler/Deb T3


Zitzler/Deb T4

Multikriterielles Testproblem (konvex)

CONSTR

CONSTR

Multikriterielles Testproblem (konvex) mit zwei Randbedingungen

Box

Box

Multikriterielles Testproblem (Kreis) mit zwei Randbedingungen

Abhängige Parameter

Bedingung im Parameterraum: Y > X

Flood Mitigation

Flood Mitigation

Multicriteria Problem Flood Mitigation and Hydropower Generation.

Sharma, Ajay (2008): Inflow prediction and optimal operation of reservoir system during flood by the combined application of ANN and different Optimization techniques. Master's Thesis. Link

  1. Beale, E. M. L. (1958): On an iterative method of finding a local minimum of a function of more than one variable. Technical Report 25, Statistical Techniques Research Group, Princeton University.