Wave:GoodnessOfFit: Difference between revisions
m (→Notes) |
(→Logarithmic Nash-Sutcliffe efficiency: Update logarithmic Nash-Sutcliffe formula for v2.2.0) |
||
Line 72: | Line 72: | ||
===Logarithmic Nash-Sutcliffe efficiency=== | ===Logarithmic Nash-Sutcliffe efficiency=== | ||
:<math>E,ln = 1-\frac{\sum_{t=1}^T\left(ln(Q_o^t)-ln(Q_m^t)\right)^2}{\sum_{t=1}^T\left(ln(Q_o^t)- | :<math>E,ln = 1-\frac{\sum_{t=1}^T\left(ln(Q_o^t+\epsilon)-ln(Q_m^t+\epsilon)\right)^2}{\sum_{t=1}^T\left(ln(Q_o^t)-\overline{ln(Q_o+\epsilon)}\right)^2}</math> | ||
with | with | ||
:<code>E,ln</code>: Logarithmic Nash-Sutcliffe efficiency [-] | :<code>E,ln</code>: Logarithmic Nash-Sutcliffe efficiency [-] | ||
:<code>Q<sub>o</sub><sup>t</sup></code>: observed value at time <code>t</code> | :<code>Q<sub>o</sub><sup>t</sup></code>: observed value at time <code>t</code> | ||
:<code>Q<sub>m</sub><sup>t</sup></code>: simulated value at time <code>t</code> | :<code>Q<sub>m</sub><sup>t</sup></code>: simulated value at time <code>t</code> | ||
:<code>ε</code>: small constant set to 1% of the average value of <code>Q<sub>o</sub></code> as recommended by {{:Literatur:Pushpalatha_2012}}. | |||
< | |||
</ | |||
: | |||
===Kling-Gupta efficiency=== | ===Kling-Gupta efficiency=== |
Revision as of 10:28, 9 February 2023
Wave | Download | Development
Beschreibung
GoodnessOfFit calculates various goodness of fit parameters for two time series:
Volume error
- [math]\displaystyle{ m = 100 \cdot \frac{\sum_{t=1}^T{(Q_m^t - Q_o^t)}}{\sum_{t=1}^T{Q_o^t}} }[/math]
with:
m
: Volume error [%]Qot
: observed value at timet
Qmt
: simulated value at timet
Sum of squared errors
- [math]\displaystyle{ F^2 = \sum_{t=1}^T{\left(Q_o^t - Q_m^t\right)^2} }[/math]
with
F²
: Sum of squared errorsQot
: observed value at timet
Qmt
: simulated value at timet
Correlation coefficient / coefficient of determination
- [math]\displaystyle{ r = \frac{s_{o,m}}{s_o \cdot s_m} }[/math]
with
- [math]\displaystyle{ s_{o,m} = \frac{1}{n - 1} \sum_{t=1}^T{(Q_o^t - \overline{Q_o}) \cdot (Q_m^t - \overline{Q_m})} }[/math]
- [math]\displaystyle{ s_o = \sqrt{\frac{1}{n - 1} \sum_{t=1}^T{(Q_o^t - \overline{Q_o})^2}} }[/math]
- [math]\displaystyle{ s_m = \sqrt{\frac{1}{n - 1} \sum_{t=1}^T{(Q_m^t - \overline{Q_m})^2}} }[/math]
with
r
: correlation coefficient (-1 ≤ r ≤ 1
)r²
: coefficient of determination (0 ≤ r² ≤ 1
)so,m
: covarianceso
: standard deviation of observed valuessm
: standard deviation of simulated valuesQot
: observed value at timet
Qmt
: simulated value at timet
n
: Number of valuesQo
: observed averageQm
: simulated average
Rating
Coefficient of determination | Rating |
---|---|
< 0.2 | unsatisfactory |
0.2 - 0.4 | satisfactory |
0.4 - 0.6 | good |
0.6 - 0.8 | very good |
> 0.8 | excellent |
Nash-Sutcliffe efficiency
- [math]\displaystyle{ E = 1-\frac{\sum_{t=1}^T\left(Q_o^t-Q_m^t\right)^2}{\sum_{t=1}^T\left(Q_o^t-\overline{Q_o}\right)^2} }[/math] [1]
with
E
: Nash-Sutcliffe efficiency [-]Qo
: observed averageQot
: observed value at timet
Qmt
: simulated value at timet
Nash-Sutcliffe efficiencies can range from -∞ to 1. An efficiency of 1 (E=1) corresponds to a perfect match of modeled discharge to the observed data. An efficiency of 0 (E=0) indicates that the model predictions are as accurate as the mean of the observed data, whereas an efficiency less than zero (-∞<E<0) occurs when the observed mean is a better predictor than the model. Essentially, the closer the model efficiency is to 1, the more accurate the model is.
- — Wikipedia[2]
Logarithmic Nash-Sutcliffe efficiency
- [math]\displaystyle{ E,ln = 1-\frac{\sum_{t=1}^T\left(ln(Q_o^t+\epsilon)-ln(Q_m^t+\epsilon)\right)^2}{\sum_{t=1}^T\left(ln(Q_o^t)-\overline{ln(Q_o+\epsilon)}\right)^2} }[/math]
with
E,ln
: Logarithmic Nash-Sutcliffe efficiency [-]Qot
: observed value at timet
Qmt
: simulated value at timet
ε
: small constant set to 1% of the average value ofQo
as recommended by Pushpalatha et al. (2012)[3].
Kling-Gupta efficiency
- [math]\displaystyle{ \text{KGE} = 1 - \sqrt{ (r - 1)^2 + (\beta - 1)^2 + (\gamma - 1)^2 } }[/math]
- with
r
: correlation coefficientβ
: bias ratioγ
: variability ratio
-∞ ≤ KGE ≤ 1
. Larger is better.
Reference: Gupta et al. 2009[4]
Hydrologic deviation
- [math]\displaystyle{ D = 200 \cdot \frac{\sum_{t=1}^T{|Q_m^t - Q_o^t| \cdot Q_o^t}}{n \cdot {Q_{o,max}}^2} }[/math]
mit
D
: Hydrologic deviation [-]Qot
: observed value at timet
Qmt
: simulated value at timet
n
: Number of valuesQo,max
: observed maximum
[Die hydrologische Deviation] kann verstanden werden als gewogene mittlere Abweichung, angegeben in Prozent des jeweiligen Spitzenabflusses. Bei völliger Übereinstimmung der beiden Kurven würde sich somit die Deviation zu Null ergeben; bei Vorhandensein der gemessenen Kurve (in Dreiecksform) und Nichtvorhandensein der gerechneten Kurve (alle Ordinaten gleich Null) ergäbe sich eine Deviation von 50,0 — um nur zwei Extremfälle zu nennen.
- — Schultz (1968), S.53[5]
Rating
Deviation | Rating |
---|---|
0 - 3 | very good |
3 - 10 | good |
10 - 18 | usable |
- — Schultz (1968)[5]
Notes
The two time series are cleaned before conducting the analysis, i.e. they are cut to each other's extents and all non-coincident nodes and nodes that have a NaN value in one of the time series are discarded.
Literature
- ↑ Nash, J. E. and Sutcliffe, J. V. (1970): River flow forecasting through conceptual models part I — A discussion of principles, Journal of Hydrology, 10 (3), 282–290, DOI:10.1016/0022-1694(70)90255-6.
- ↑ Wikipedia contributors: "Nash-Sutcliffe efficiency coefficient," Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/w/index.php?title=Nash-Sutcliffe_efficiency_coefficient&oldid=231196847 (accessed September 18, 2008).
- ↑ Pushpalatha, Raji, Perrin, Charles, Le Moine, Nicolas, Andréassian, Vazken (2012): A review of efficiency criteria suitable for evaluating low-flow simulations, Journal of Hydrology, Volumes 420–421, 2012, Pages 171-182, ISSN 0022-1694, https://doi.org/10.1016/j.jhydrol.2011.11.055.
- ↑ Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009): Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694
- ↑ 5.0 5.1 Schultz, G. A. (1968): Bestimmung theoretischer Abflußganglinien durch elektronische Berechnung von Niederschlagskonzentration und Retention (HYREUN-Verfahren), Versuchsanstalt für Wasserbau der Technischen Hochschule München, Bericht Nr. 11, [IHWB-Signatur: 10 WBW 11]