Wave:GoodnessOfFit: Difference between revisions

From BlueM
Jump to navigation Jump to search
(GoodnessOfFit)
 
m (Formatierung)
Line 18: Line 18:
:<code>Q<sub>m</sub></code>: simulierter Abfluss
:<code>Q<sub>m</sub></code>: simulierter Abfluss


Nash-Sutcliffe efficiencies can range from -∞ to 1. An efficiency of 1 (''E''=1) corresponds to a perfect match of modeled discharge to the observed data.  An efficiency of 0 (''E''=0) indicates that the model predictions are as accurate as the mean of the observed data, whereas an efficiency less than zero (-∞<''E''<0) occurs when the observed mean is a better predictor than the model. Essentially, the closer the model efficiency is to 1, the more accurate the model is.<ref>'''Wikipedia contributors''': "Nash-Sutcliffe efficiency coefficient," Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/w/index.php?title=Nash-Sutcliffe_efficiency_coefficient&oldid=231196847 (accessed September 18, 2008). </ref>
<blockquote>
Nash-Sutcliffe efficiencies can range from -∞ to 1. An efficiency of 1 (''E''=1) corresponds to a perfect match of modeled discharge to the observed data.  An efficiency of 0 (''E''=0) indicates that the model predictions are as accurate as the mean of the observed data, whereas an efficiency less than zero (-∞<''E''<0) occurs when the observed mean is a better predictor than the model. Essentially, the closer the model efficiency is to 1, the more accurate the model is.
</blockquote>
:-- Wikipedia<ref>'''Wikipedia contributors''': "Nash-Sutcliffe efficiency coefficient," Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/w/index.php?title=Nash-Sutcliffe_efficiency_coefficient&oldid=231196847 (accessed September 18, 2008). </ref>


==Hinweise==
==Hinweise==

Revision as of 10:17, 5 December 2008

Wave.png Wave | Download | Development

GoodnessOfFit berechnet für zwei Zeitreihen die folgenden Indikatoren der Anpassungsgüte:

Summe der Fehlerquadrate

[math]\displaystyle{ \sum_{t=1}^T{\left(Q_o^t - Q_m^t\right)^2} }[/math]

mit

Qo: gemessener Abfluss
Qm: simulierter Abfluss

Nash-Sutcliffe Koeffizient

[math]\displaystyle{ 1-\frac{\sum_{t=1}^T\left(Q_o^t-Q_m^t\right)^2}{\sum_{t=1}^T\left(Q_o^t-\overline{Q_o}\right)^2} }[/math] [1]

mit

Qo: gemessener Abfluss
Qm: simulierter Abfluss

Nash-Sutcliffe efficiencies can range from -∞ to 1. An efficiency of 1 (E=1) corresponds to a perfect match of modeled discharge to the observed data. An efficiency of 0 (E=0) indicates that the model predictions are as accurate as the mean of the observed data, whereas an efficiency less than zero (-∞<E<0) occurs when the observed mean is a better predictor than the model. Essentially, the closer the model efficiency is to 1, the more accurate the model is.

-- Wikipedia[2]

Hinweise

Die beiden Zeitreihen werden vor der Analyse bereinigt, d.h. die Längen werden aufeinander zugeschnitten und alle nicht-gemeinsamen Stützstellen werden entfernt. Ausserdem werden auch alle Stützstellen entfernt, bei denen eine der Reihen einen NaN-Wert aufweist.

TODO

  • Momentan wird angenommen, dass die in der Auswahlliste weiter oben gelegene Zeitreihe die Messzeitreihe ist, und die andere die simulierte Zeitreihe (spielt nur für Nash-Sutcliffe eine Rolle). Der Benutzer sollte dies selber bestimmen können
  • Volumenfehler auch berechnen

Literaturangaben

  1. Nash, J. E. and J. V. Sutcliffe (1970): River flow forecasting through conceptual models part I — A discussion of principles, Journal of Hydrology, 10 (3), 282–290.
  2. Wikipedia contributors: "Nash-Sutcliffe efficiency coefficient," Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/w/index.php?title=Nash-Sutcliffe_efficiency_coefficient&oldid=231196847 (accessed September 18, 2008).