Wave:GoodnessOfFit: Difference between revisions
m (→Notes) |
(→Kling-Gupta efficiency: fix reference #120) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
<div style="float:right; margin-left:10px;">__TOC__</div> | <div style="float:right; margin-left:10px;">__TOC__</div> | ||
== | ==Description== | ||
'''GoodnessOfFit''' calculates various goodness of fit | [[File:GoodnessOfFit ResultChart.png|thumb|right|Result chart for a GoodnessOfFit analysis with two simulated time series]] | ||
'''GoodnessOfFit''' calculates various goodness of fit indicators for one or more "simulated" time series in relation to one "observed" time series. | |||
Optionally, the analysis can be performed for individual hydrologic years. | |||
The indicators "Volume error", "Nash-Sutcliffe efficiency", "Logarithmic Nash-Sutcliffe efficiency", "Kling-Gupta efficiency" and "Coefficient of correlation" are displayed in a radar chart. The full set of indicators is output to a result table. | |||
== Indicators == | |||
=== Volume error === | === Volume error === | ||
Line 72: | Line 79: | ||
===Logarithmic Nash-Sutcliffe efficiency=== | ===Logarithmic Nash-Sutcliffe efficiency=== | ||
:<math>E,ln = 1-\frac{\sum_{t=1}^T\left(ln(Q_o^t)-ln(Q_m^t)\right)^2}{\sum_{t=1}^T\left(ln(Q_o^t)- | :<math>E,ln = 1-\frac{\sum_{t=1}^T\left(ln(Q_o^t+\epsilon)-ln(Q_m^t+\epsilon)\right)^2}{\sum_{t=1}^T\left(ln(Q_o^t)-\overline{ln(Q_o+\epsilon)}\right)^2}</math> | ||
with | with | ||
:<code>E,ln</code>: Logarithmic Nash-Sutcliffe efficiency [-] | :<code>E,ln</code>: Logarithmic Nash-Sutcliffe efficiency [-] | ||
:<code>Q<sub>o</sub><sup>t</sup></code>: observed value at time <code>t</code> | :<code>Q<sub>o</sub><sup>t</sup></code>: observed value at time <code>t</code> | ||
:<code>Q<sub>m</sub><sup>t</sup></code>: simulated value at time <code>t</code> | :<code>Q<sub>m</sub><sup>t</sup></code>: simulated value at time <code>t</code> | ||
:<code>ε</code>: small constant set to 1% of the average value of <code>Q<sub>o</sub></code> as recommended by {{:Literatur:Pushpalatha_2012}}. | |||
< | |||
</ | |||
: | |||
===Kling-Gupta efficiency=== | ===Kling-Gupta efficiency=== | ||
Line 95: | Line 96: | ||
<code>-∞ ≤ KGE ≤ 1</code>. Larger is better. | <code>-∞ ≤ KGE ≤ 1</code>. Larger is better. | ||
Reference: {{:Literatur: | Reference: {{:Literatur:Kling_2012|Kling et al. 2012}} | ||
===Hydrologic deviation=== | ===Hydrologic deviation=== | ||
Line 126: | Line 127: | ||
==Notes== | ==Notes== | ||
The | The time series being compared are cleaned before conducting the analysis, i.e. they are cut to each other's extents and all non-coincident nodes and nodes that have a NaN value in one of the time series are discarded. | ||
==Literature== | ==Literature== |
Latest revision as of 23:32, 4 October 2023
Wave | Download | Development
Description
GoodnessOfFit calculates various goodness of fit indicators for one or more "simulated" time series in relation to one "observed" time series.
Optionally, the analysis can be performed for individual hydrologic years.
The indicators "Volume error", "Nash-Sutcliffe efficiency", "Logarithmic Nash-Sutcliffe efficiency", "Kling-Gupta efficiency" and "Coefficient of correlation" are displayed in a radar chart. The full set of indicators is output to a result table.
Indicators
Volume error
- [math]\displaystyle{ m = 100 \cdot \frac{\sum_{t=1}^T{(Q_m^t - Q_o^t)}}{\sum_{t=1}^T{Q_o^t}} }[/math]
with:
m
: Volume error [%]Qot
: observed value at timet
Qmt
: simulated value at timet
Sum of squared errors
- [math]\displaystyle{ F^2 = \sum_{t=1}^T{\left(Q_o^t - Q_m^t\right)^2} }[/math]
with
F²
: Sum of squared errorsQot
: observed value at timet
Qmt
: simulated value at timet
Correlation coefficient / coefficient of determination
- [math]\displaystyle{ r = \frac{s_{o,m}}{s_o \cdot s_m} }[/math]
with
- [math]\displaystyle{ s_{o,m} = \frac{1}{n - 1} \sum_{t=1}^T{(Q_o^t - \overline{Q_o}) \cdot (Q_m^t - \overline{Q_m})} }[/math]
- [math]\displaystyle{ s_o = \sqrt{\frac{1}{n - 1} \sum_{t=1}^T{(Q_o^t - \overline{Q_o})^2}} }[/math]
- [math]\displaystyle{ s_m = \sqrt{\frac{1}{n - 1} \sum_{t=1}^T{(Q_m^t - \overline{Q_m})^2}} }[/math]
with
r
: correlation coefficient (-1 ≤ r ≤ 1
)r²
: coefficient of determination (0 ≤ r² ≤ 1
)so,m
: covarianceso
: standard deviation of observed valuessm
: standard deviation of simulated valuesQot
: observed value at timet
Qmt
: simulated value at timet
n
: Number of valuesQo
: observed averageQm
: simulated average
Rating
Coefficient of determination | Rating |
---|---|
< 0.2 | unsatisfactory |
0.2 - 0.4 | satisfactory |
0.4 - 0.6 | good |
0.6 - 0.8 | very good |
> 0.8 | excellent |
Nash-Sutcliffe efficiency
- [math]\displaystyle{ E = 1-\frac{\sum_{t=1}^T\left(Q_o^t-Q_m^t\right)^2}{\sum_{t=1}^T\left(Q_o^t-\overline{Q_o}\right)^2} }[/math] [1]
with
E
: Nash-Sutcliffe efficiency [-]Qo
: observed averageQot
: observed value at timet
Qmt
: simulated value at timet
Nash-Sutcliffe efficiencies can range from -∞ to 1. An efficiency of 1 (E=1) corresponds to a perfect match of modeled discharge to the observed data. An efficiency of 0 (E=0) indicates that the model predictions are as accurate as the mean of the observed data, whereas an efficiency less than zero (-∞<E<0) occurs when the observed mean is a better predictor than the model. Essentially, the closer the model efficiency is to 1, the more accurate the model is.
- — Wikipedia[2]
Logarithmic Nash-Sutcliffe efficiency
- [math]\displaystyle{ E,ln = 1-\frac{\sum_{t=1}^T\left(ln(Q_o^t+\epsilon)-ln(Q_m^t+\epsilon)\right)^2}{\sum_{t=1}^T\left(ln(Q_o^t)-\overline{ln(Q_o+\epsilon)}\right)^2} }[/math]
with
E,ln
: Logarithmic Nash-Sutcliffe efficiency [-]Qot
: observed value at timet
Qmt
: simulated value at timet
ε
: small constant set to 1% of the average value ofQo
as recommended by Pushpalatha et al. (2012)[3].
Kling-Gupta efficiency
- [math]\displaystyle{ \text{KGE} = 1 - \sqrt{ (r - 1)^2 + (\beta - 1)^2 + (\gamma - 1)^2 } }[/math]
- with
r
: correlation coefficientβ
: bias ratioγ
: variability ratio
-∞ ≤ KGE ≤ 1
. Larger is better.
Reference: Kling et al. 2012[4]
Hydrologic deviation
- [math]\displaystyle{ D = 200 \cdot \frac{\sum_{t=1}^T{|Q_m^t - Q_o^t| \cdot Q_o^t}}{n \cdot {Q_{o,max}}^2} }[/math]
mit
D
: Hydrologic deviation [-]Qot
: observed value at timet
Qmt
: simulated value at timet
n
: Number of valuesQo,max
: observed maximum
[Die hydrologische Deviation] kann verstanden werden als gewogene mittlere Abweichung, angegeben in Prozent des jeweiligen Spitzenabflusses. Bei völliger Übereinstimmung der beiden Kurven würde sich somit die Deviation zu Null ergeben; bei Vorhandensein der gemessenen Kurve (in Dreiecksform) und Nichtvorhandensein der gerechneten Kurve (alle Ordinaten gleich Null) ergäbe sich eine Deviation von 50,0 — um nur zwei Extremfälle zu nennen.
- — Schultz (1968), S.53[5]
Rating
Deviation | Rating |
---|---|
0 - 3 | very good |
3 - 10 | good |
10 - 18 | usable |
- — Schultz (1968)[5]
Notes
The time series being compared are cleaned before conducting the analysis, i.e. they are cut to each other's extents and all non-coincident nodes and nodes that have a NaN value in one of the time series are discarded.
Literature
- ↑ Nash, J. E. and Sutcliffe, J. V. (1970): River flow forecasting through conceptual models part I — A discussion of principles, Journal of Hydrology, 10 (3), 282–290, DOI:10.1016/0022-1694(70)90255-6.
- ↑ Wikipedia contributors: "Nash-Sutcliffe efficiency coefficient," Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/w/index.php?title=Nash-Sutcliffe_efficiency_coefficient&oldid=231196847 (accessed September 18, 2008).
- ↑ Pushpalatha, Raji, Perrin, Charles, Le Moine, Nicolas, Andréassian, Vazken (2012): A review of efficiency criteria suitable for evaluating low-flow simulations, Journal of Hydrology, Volumes 420–421, 2012, Pages 171-182, ISSN 0022-1694, https://doi.org/10.1016/j.jhydrol.2011.11.055.
- ↑ Kling, H., Fuchs, M., Paulin, M. (2012): Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, Journal of Hydrology, Volumes 424–425, Pages 264-277, ISSN 0022-1694, https://doi.org/10.1016/j.jhydrol.2012.01.011.
- ↑ 5.0 5.1 Schultz, G. A. (1968): Bestimmung theoretischer Abflußganglinien durch elektronische Berechnung von Niederschlagskonzentration und Retention (HYREUN-Verfahren), Versuchsanstalt für Wasserbau der Technischen Hochschule München, Bericht Nr. 11, [IHWB-Signatur: 10 WBW 11]