Storm-water overflows

From BlueM
Revision as of 00:40, 27 June 2013 by Mkissel (talk | contribs) (moved Regenüberläufe to Storm-water overflows)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

{{#hierarchy-top:}}

Verzweigung.gif

Branching points serve the purpose of dividing an inflow into two outflows according to a certain distribution specification. Branching points can be an intake structure in rivers for water supply or irrigation purposes,forks in a sewer system, diversions of a part of the inflow or outflow of a dam, storm-water overflows etc..

There are three possible approaches to define the distribution specification.


Threshold model (Option 1)

Abbildung 47b: Outflow distribution using the threshold model approach.

According to the threshold model the second outflow (e.g. storm-water overflow: outlet pipe) is applied only after a critical inflow Qkrit has been reached, due to which the first outflow (e.g. storm-water overflow: throttle)backwater retention reaches the overflow crest. In reality a perfect distribution of the outflows after having reached the threshold value is usually not possible, therefore a selectivity can be specified for the structure to better represent real conditions.

The selectivity is defined as: [math]\displaystyle{ \mbox{Trennschaerfe} = \frac{Q_{ab}(Q_{zu}=5 \cdot Q_{krit})}{Q_{krit}} }[/math]

Abbildung 47: Definition selectivity parameter in BlueM


Percentage distribution (Option 2)

Independent of inflow a constant distribution into two outflows ab1 and Qab2 according to a certain percentage ratio occurs. Here too, one has the option to influence the distribution through scaling.


Characteristic curve (Option 3)

A dependency between outflow Qab1 and inflow, which was derived through hydraulic calculations or operating instructions, is utilized as a polygon course. The second outflow Qab2 is calculated as the residual value of inflow - Qab1.


{{#hierarchy-bottom:}}